8. Понятие обратной матрицы и алгоритм её вычисления.

Матрица А-1 называется обратной по отношению к квадратной матрице А, если при умножении её на заданную как справа так и слева получатся единичная матрица. Теорема (необходимое и достаточн.условие сущ-я обратн.матрицы): обратная матрица А-1 сущ-т и единственна тогда и только тогда, когда заданная матрица не вырожденная. Матрица называется вырожденной, если её определитель равен 0, в противном случае она – не вырожденная. Алгоритм: 1)Определитель заданной матрицы. 2)Транспонирование. 3)Алгебраические дополнения всех элементов транспонированной матрицы. 4) Присоед.матрица А@ (на месте каждого эл-та Ат его алгебраич.доп-я). 5) А-1= 1/DА *A@. 6) Проверка=>А-1  *А=Е.

9. Ранг матрицы. Элементарные преобразования.

Рангом матрицы А называется наивысший порядок отличных от 0 миноров этой матрицы [rang A=r(A)]. Ранг матрицы не изменяется при проведении элементарных преобразований. Преобразования: 1)отбрасывание строки или столбца, состоящих из одних нулей; 2)умножение всех эл-ов к.-л. строки или столбца матрицы на одно и то же число, отличное от 0; 3)изменение порядка строк или столбцов матрицы; 4)прибавление к каждому эл-ту к.-л. строки или столбца эл-ов др. строки или столбца, умноженных на одно и то же число, не равное 0; 5) транспонирование матрицы.

10. Системы линейных алгебраических уравнений. Основные определения. Матричная форма записи.

Линейным ур-ем относительно неизвестных x1,x2,…,xnназывается выражение видаa1x1+a2x2+…+anxn=b, где a1,a2,…,an и b- простые числа, причём a1,a1,…,anназываются коэффициентами при неизвестных, а b- свободным коэффициентом. Последовательность чисел k1,k2,…,kn называется решением ур-я, если при подстановке этих чисел в ур-е оно обращается в верное равенство. Два линейных ур-я называются равносильными, если их решения совпадают. Чтобы получить равносильное ур-е из заданного, необходимо осуществить следующие преобразования: 1) перенос слагаемых из одной части ур-я в другую; 2) поэлементное умножение всего ур-я на одно и то же число, отличное от ноля. Решить линейное ур-е –это значит найти все его решения или установить, что их нет. Система уравнений называется совместной, если она имеет хотя бы одно решение. Система ур-ий называется определённой, если она имеет одно единственное решение, и неопределённой, если решений множество. Неизвестное x1 называется разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с коэффициентом, равным 1, а во все др. ур-я системы неизвестное x1 не входит. Если каждое ур-е системы содержит разрешённое неизвестное, то такую систему называют разрешённой. Неизвестные СЛУ, которые не входят в разрешённый набор, называются свободными. Разрешённая СЛУ всегда совместна, она будет определённой, если число ур-ий равно числу неизвестных; и неопределённой, если число неизвестных больше, чем ур-ий. Для того, чтобы определить совместна система или нет, не решая её, можно воспользоваться теоремой Кронекера-Капелли. Матрица, эл-тами которой являются коэффициенты при неизвестных системы, называется матрицей системы. Матрица системы, дополненная столбцом свободных коэффициентов, называется расширенной матрицей.

11. Правило Крамера.

Правило Крамера: пусть DА-определитель матрицы системы, а Dj-определитель матрицы, полученной из матрицы системы заменой j-ого столбца на столбец свободных коэффициентов; тогда, если DА¹0, то система имеет единственное решение, определяемое по формуле ¾ Xj= Dj/ DA.

12. Теорема Кронекера-Капелли.

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

13. Решение систем линейных алгебраических ур-ий методом Гаусса.

Метод Гаусса: каждую СЛУ при помощи конечного числа преобразований можно превратить в разрешённую системы ур-ий или в систему, содержащую противоречивое ур-е. Противоречивым называется ур-е вида OX1+OX2+...+OXn=b. Если каждое ур-е системы содержит разрешённое неизвестное, то такую систему называют разрешённой. Неизвестное x1 называют разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с коэффициентом, равным 1, а во все другие ур-я системы неизвестное x1 не входит.

14. Матричный метод решения системы линейных алгебраических уравнений.

Этим способом можно решить лишь те системы, в которых число неизвестных равно числу уравнений. Алгоритм: 1)Записать матрицу системы (А); 2) Найти обратную матрицу для матрицы системы (А-1); 3) Умножить А-1 на матрицу свободных коэффициентов (В) ¾ X=A-1*B.


Информация о работе «Шпаргалка по высшей математике»
Раздел: Математика
Количество знаков с пробелами: 33854
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
28208
0
0

... треугольника or пар-мма. Св-ва 1)a+b=b+a 2)(a+b)+c= a+(b+c) 3)a+0=a 4) a+(-a)=0 5)1*a=a 6)λ(μ*a)=(λ*μ)*a; 7) (λ+μ)*a=λ*a+μ*a 8) λ(a+b)=λa+ λb. В математике принято называть линейным (или векторным пространством всякое множество, если 1) на элементах множества определены две операции: одн; из них, называемая суммой элементов, любым двум ...

Скачать
66329
0
0

... ли окончить школу, обладая требуемой для аттестата зрелости математической культурой и не научившись в то же время писать совершенно безошибочно. Заканчивая эту главу, посвященную вопросам воспитательного воздействия уроков математики на культуру мышления учащихся, я предвижу естественное и законное недоумение читателя по поводу того, что мною нигде даже не затронута проблема развития элементов ...

Скачать
28718
0
0

... только живым.Он придерживался"принципа Реди",сформулированного в 1668 году итальянским ученым -врачом Ф.Реди."Все живое происходит только из живого".Сегодня развитие естествознания не опровергает .а во многом подтверждает идеи Вернадского. 74)Типы взаимодействий в природе?-Типы взаимодействий между элементарными частицами 1.Гравитационное.2Электромагнитное.3слабое.4.Сильное ядерное. 75)Типы ...

Скачать
46715
0
0

т.е. является б/м. Док-во а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an. Свойство б/м Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, ...

0 комментариев


Наверх