3.2. Групповая оценка объектов

В данном параграфе рассмотрим алгоритмы обра­ботки результатов экспертного оценивания множества объектов. Пусть m экспертов произвели оценку n объек­тов по l показателям. Результаты оценки представлены в виде величин , где j – номер эксперта, i - номер объекта, h – номер показателя (признака) сравнения. Если оценка объектов произведена методом ранжирова­ния, то величины  представляют собой ранги. Если оценка объектов выполнена методом непосредственной оценки или методом последовательного сравнения, то величины  представляют собой числа из некоторого отрезка числовой оси, или баллы. Обработка результа­тов оценки существенно зависит от рассмотренных мето­дов измерения.

Рассмотрим случай, когда величины  получены мето­дами непосредственной оценки или последовательного сравнения, т. е.  являются числами, или баллами. Для получения групповой оценки объектов в этом случае можно (воспользоваться средним значением оценки для каждого объекта [12]

(5.1)

где  - коэффициенты весов показателей сравнения объектов,  - коэффициенты компетентности экспертов. Коэффициенты весов показателей и компетентности объ­ектов являются нормированными величинами [12]

(5.2)

Коэффициенты весов показателей могут быть опреде­лены экспертным путем. Если  - коэффициент веса h-го показателя, даваемый j-м экспертом, то средний ко­эффициент веса h-го показателя по всем экспертам ра­вен [12]

(5.3)

Получение групповой экспертной оценки путем сум­мирования индивидуальных оценок с весами компетент­ности и важности показателей при измерении свойств объектов в кардинальных шкалах основывается на пред­положении о выполнении аксиом теории полезности фон Неймана-Моргенштерна как для индивидуальных, так и для групповой оценки и условий неразличимости объектов в групповом отношении, если они неразличимы во всех индивидуальных оценках (частичный принцип Парето). В реальных задачах эти условия, как пра­вило, выполняются, поэтому получение групповой оцен­ки объектов путем суммирования с весами индивидуаль­ных оценок экспертов широко применяется на практике.

Коэффициенты компетентности экспертов можно вы­числить по апостериорным данным, т. е. по результатам оценки объектов. Основной идеей этого вычисления яв­ляется предположение о том, что компетентность экспер­тов должна оцениваться по степени согласованности их оценок с групповой оценкой объектов.

Алгоритм вычисления коэффициентов компетентно­сти экспертов имеет вид рекуррентной процедуры [12]:

(5.4)

(5.5)

(5.6)

Вычисления начинаются с t=1. В формуле (5.4) началь­ные значения коэффициентов компетентности принима­ются одинаковыми и равными  Тогда по фор­муле (5.4) групповые оценки объектов первого приближе­ния равны средним арифметическим значениям оценок экспертов [12]

(5.7)

Далее вычисляется величина  по формуле (5.5) [12]:

   (5.8)

и значение коэффициентов компетентности первого при­ближения по формуле (5.6) [12]:

   (5.9)

Используя коэффициенты компетентности первого приближения, можно повторить весь процесс вычисле­ния по формулам (5.4), (5.5), (5.6) и получить вторые приближения величин

Повторение рекуррентной процедуры вычислений оце­нок объектов и коэффициентов компетентности естест­венно ставит вопрос о ее сходимости. Для рассмотрения этого вопроса исключим из уравнений (5.4), (5.6) пере­менные  и  и представим эти уравнения в вектор­ной форме [12]

(5.10)

где матрицы В размерности  и С размерности  равны [12]

(5.11)

Величина  в уравнениях (5.10) определяется по фор­муле (5.5).

Если матрицы В и С неотрицательны и неразложи­мы, то, как это следует из теоремы Перрона – Фробениуса, при  векторы  и  - сходятся к собственным векторам матриц В и С, соответствующим макси­мальным собственным числам этих матриц [12]

(5.12)

Предельные значения векторов х и k можно вычислить из уравнений [12]:

  (5.13)

где  максимальные собственные числа матриц В и С.

Условие неотрицательности матриц В и С легко вы­полняется выбором неотрицательных элементов  мат­рицы Х оценок объектов экспертами.

Условие неразложимости матриц В и С практически выполняется, поскольку, если эти матрицы разложимы, то это означает, что эксперты и объекты распадаются на независимые группы. При этом каждая группа экс­пертов оценивает только объекты своей группы. Естест­венно, что получать групповую оценку в этом случае нет смысла. Таким образом, условия неотрицательности и неразложимости матриц В и С, а следовательно, и условия сходимости процедур (5.4), (5.5), (5.6) в практи­ческих условиях выполняются.

Следует заметить, что практическое вычисление век­торов групповой оценки объектов и коэффициентов ком­петентности проще выполнять по рекуррентным форму­лам (5.4), (5.5), (5.6). Определение предельных значе­ний этих векторов по уравнению (5.13) требует примене­ния вычислительной техники.

Рассмотрим теперь случай, когда эксперты произво­дят оценку множества объектов методом ранжирования так, что величины  есть ранги. Обработка результа­тов ранжирования заключается в построении обобщен­ной ранжировки. Для построения такой ранжировки введем конечномерное дискретное пространство ранжи­ровок и метрику в этом пространстве. Каждая ранжи­ровка множества объектов j-м экспертом есть точка  в пространстве ранжировок.

Ранжировку  можно представить в виде матрицы парных сравнений, элементы которой определим следу­ющим образом [12]:

Очевидно, что , поскольку каждый объект эквива­лентен самому себе. Элементы матрицы  антисим­метричны .

Если все ранжируемые объекты эквивалентны, то все элементы матрицы парных сравнений равны нулю. Та­кую матрицу будем обозначать  и считать, что точка в пространстве ранжировок, соответствующая матрице , является началом отсчета.

Обращение порядка ранжируемых объектов приводит к транспонированию матрицы парных сравнений.

Метрика  как расстояние между i-й и j-й ранжировками определяется единственным образом фор­мулой [12]

если выполнены следующие 6 аксиом [12]:


Информация о работе «Метод экспертных оценок»
Раздел: Менеджмент
Количество знаков с пробелами: 75121
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
43559
3
2

... элемента на качество принимаемых управленческих решений - одна из главных задач оптимизации процессов принятия решений в управлении общественным производством. Одним из условий преодоления субъективизма при подготовке управленческих решений являются методы исследования операций, методы экспертных оценок. Процедура выработки управленческих решений, являясь сложным логико-мыслительным процессом, ...

Скачать
6269
0
0

... . В ней прежде всего однозначно формулируется подлежащее прогнозу явление, предусматривается в виде гипотиз возможные варианты его исхода. Весьма часто применяется в прикладной социологии и такой метод экспертного прогноза, как “дельфинийская техника”[1]. Он заключается в выработке согласованных мнений путём многократного повторения опроса одних и тех же экспертов. После первого опроса и ...

Скачать
12707
7
3

... осуществляется по следующей формуле: , где , - количество повторений каждого ранга j – м студентом. Практическая работа Здесь осуществляется практическая реализация метода экспертных оценок в анализе качества обучающего процесса в ИП "Стратегия". Этот раздел содержит расчеты показателей, сравнения результирующих данных, факторы, влияющие на показатели. Для получения всех этих данных ...

Скачать
41248
0
0

... Поэтому целесообразно разработать предназначенный для поддержки проведения экспертных исследований АРМ "МАТЭК" ("Математика в экспертизе") на базе РС фирмы "Apple" с использованием современных достижений в области теории и практики экспертных оценок, в области прикладной математической статистики, прежде всего статистики объектов нечисловой природы. Список литературы 1. Орлов А.И. Допустимые ...

0 комментариев


Наверх