3.5. Определение взаимосвязи ранжировок
При обработке результатов ранжирования могут возникнуть задачи определения зависимости между ранжировками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокупности проблем или взаимосвязи между двумя признаками.
В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет являться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.
Коэффициент ранговой корреляции Спирмена определяется формулой [12]:
(5.50)
где - взаимный корреляционный момент первой и второй ранжировок, - дисперсии этих ранжировок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:
(5.51)
(5.52)
где n – число ранжируемых объектов, - ранги в первой и второй ранжировках соответственно, - средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:
(5.53)
Вычислим оценки средних рангов и дисперсий в предположении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представляют собой суммы натуральных чисел от единицы до n, поделенные на n. Следовательно, средние ранги для обеих ранжировок одинаковы и равны [12]
(5.54)
При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под знаком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натуральных чисел и их квадратов не зависит от порядка (перестановки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]
(i=1,2). (5.55)
Подставляя значение из (5.51) и из (5.55) в формулу (5.50), получим оценку коэффициента ранговой корреляции Спирмена [12]
(5.56)
Для проведения практических расчетов удобнее пользоваться другой формулой для коэффициента корреляции Спирмена. Ее можно получить из (5.56), если воспользоваться тождеством [12]
(5.57)
В равенстве (5.57) первые две суммы в правой части, как это следует из выражения (5.55), одинаковы и равны [12]
(5.58)
Подставляя в формулу (5.56) значение суммы из (5.57) и используя равенство (5.58), получаем следующую удобную для расчетов формулу коэффициента ранговой корреляции Спирмена [12]:
(5.59)
Коэффициент корреляции Спирмена изменяется от –1 до +1. Равенство единице достигается, как это следует из формулы (5.59), при одинаковых ранжировках, т. е. когда Значение имеет место при противоположных ранжировках (прямая и обратная ранжировки). При равенстве коэффициента корреляции нулю ранжировки считаются линейно независимыми.
Оценка коэффициента корреляции, вычисляемая по формуле (5.59), является случайной величиной. Для определения значимости этой оценки необходимо задаться величиной вероятности , принять решение о значимости коэффициента корреляции и определить значение порога по приближенной формуле [12]
(5.60)
где n – количество объектов, - функция, обратная функции [12]
для которой имеются таблицы [7]. После вычисления порогового значения оценка коэффициента корреляции считается значимой, если .
Для определения значимости оценки коэффициента Спирмена можно воспользоваться критерием Стьюдента, поскольку величина [12]
(5.61)
приближенно распределена по закону Стьюдента с n – 2 степенями свободы.
Если в ранжировках имеются связанные ранги, то коэффициент Спирмена вычисляется по следующей формуле [12]:
(5.62)
где - оценка коэффициента ранговой корреляции Спирмена, вычисляемая по формуле (5.59), а величины равны [12]
(5.63)
В этих формулах и - количество различных связанных рангов в первой и второй ранжировках соответственно.
Коэффициент ранговой корреляции Кендалла при отсутствии связанных рангов определяется формулой [12]:
где n – количество объектов, - ранги объектов, sign x – функция, равная [12]
sign
Сравнительная оценка коэффициентов ранговой корреляции Спирмена и Кендалла показывает, что вычисление коэффициентов Спирмена производится по более простой формуле. Кроме того, коэффициент Спирмена дает более точный результат, поскольку он является оптимальной по критерию минимума средней квадрата ошибки оценкой коэффициента корреляции.
Отсюда следует, что при практических расчетах корреляционной зависимости ранжировок предпочтительнее использовать коэффициент ранговой корреляции Спирмена.
ЗАКЛЮЧЕНИЕ
Динамизм и новизна современных народнохозяйственных задач, возможность возникновения разнообразных факторов, влияющих на эффективность решений, требуют, чтобы эти решения принимались быстро и в то же время были хорошо обоснованы. Опыт, интуиция, чувство перспективы в сочетании с информацией помогают специалистам точнее выбирать наиболее важные цели и направления развития, находить наилучшие варианты решения сложных научно-технических и социально-экономических задач в условиях, когда нет информации о решении аналогичных проблем в прошлом.
Использование метода экспертных оценок помогает формализовать процедуры сбора, обобщения и анализа мнений специалистов с целью преобразования их в форму, наиболее удобную для принятия обоснованного решения.
Но, следует заметить, что метод экспертных оценок не может заменить ни административных, ни плановых решений, он лишь позволяет пополнить информацию, необходимую для подготовки и принятия таких решений. Широкое использование экспертных оценок правомерно только там, где для анализа будущего невозможно применить более точные методы.
Экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков.
Несмотря на успехи, достигнутые в последние годы в разработке и практическом использовании метода экспертных оценок, имеется ряд проблем и задач, требующих дальнейших методологических исследований и практической проверки. Необходимо совершенствовать систему отбора экспертов, повышение надежности характеристик группового мнения, разработку методов проверки обоснованности оценок, исследование скрытых причин, снижающих достоверность экспертных оценок.
Однако, уже и сегодня экспертные оценки в сочетании с другими математико-статистическими методами являются важным инструментом совершенствования управления на всех уровнях.
СПИСОК ЛИТЕРАТУРЫ:
1. Афанасьев В.Г. Научное управление обществом. М.: Политиздат, 1968. 183 с.
2. Беклешев В.К., Завлин П.Н. Нормирование труда в НИИ и КБ. М.: Экономика, 1973. 203 с.
3. Берж К. Теория графов и ее применения. Изд-во иностр. лит. 1962 196 с.
4. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки. М.: Наука, 1973. 246 с.
5. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки в принятии плановых решений. М.: Экономика, 1976. 287 с.
6. Бешелев С.Д., Гурвич Ф.Г. Математико-статистические методы экспертных оценок. М.: Статистика, 1980. 263 с.
7. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. 368 с.
8. Волгин Б.А Деловые совещания. М.: Московский рабочий, 1972. 204 с.
9. Диксон Дж, Проектирование систем: изобретательство, анализ, принятие решений. М.: Мир, 1969. 323 с.
10. Добров Г.М., Ершов Ю.В., Левин Е.И., Смирнов Л.П. Экспертные оценки в научно-техническом прогнозировании. Киев: Наукова думка, 1974. 263 с.
11. Евланов Л.Г. Принятие решений в условиях неопределенности. М.: ИУНХ, 1976. 196 с.
12. Евланов Л.Г., Кутузов В.А. Экспертные оценки в управлении. М.: Экономика, 1978. 133 с.
13. Карданская Н. Принятие управленческого решения. М.: ЮНИТИ, 1999. 407 с.
14. Кемени Д., Снелл Д. Кибернетическое моделирование. М.: Советское радио, 1972. 234 с.
15. Кравченко Т.К. Процесс принятия плановых решений. М.: Экономика, 1974. 183 с.
16. Миркин Б.Г. Проблема группового выбора. М.: Наука, 1974. 256 с. . 17. Михеев В.И. Социально-психологические аспекты управления. Стиль и методы работы руководителя. М.: Молодая гвардия, 1975. 181 с.
18. Пфанцагль И. Теория измерений. М.: Мир, 1976. 278 с.
19. Тихомиров Ю.А. Управленческое решение. М.: Наука, 1996. 278 с.
20. Федоренко Н.П. Оптимизация экономики. М.: Наука, 1977. 236 с.
21. Ямпольский С.М., Лисичкин В.А. Прогнозирование научно-технического прогресса. М.: Экономика, 1974. 302 с.
... элемента на качество принимаемых управленческих решений - одна из главных задач оптимизации процессов принятия решений в управлении общественным производством. Одним из условий преодоления субъективизма при подготовке управленческих решений являются методы исследования операций, методы экспертных оценок. Процедура выработки управленческих решений, являясь сложным логико-мыслительным процессом, ...
... . В ней прежде всего однозначно формулируется подлежащее прогнозу явление, предусматривается в виде гипотиз возможные варианты его исхода. Весьма часто применяется в прикладной социологии и такой метод экспертного прогноза, как “дельфинийская техника”[1]. Он заключается в выработке согласованных мнений путём многократного повторения опроса одних и тех же экспертов. После первого опроса и ...
... осуществляется по следующей формуле: , где , - количество повторений каждого ранга j – м студентом. Практическая работа Здесь осуществляется практическая реализация метода экспертных оценок в анализе качества обучающего процесса в ИП "Стратегия". Этот раздел содержит расчеты показателей, сравнения результирующих данных, факторы, влияющие на показатели. Для получения всех этих данных ...
... Поэтому целесообразно разработать предназначенный для поддержки проведения экспертных исследований АРМ "МАТЭК" ("Математика в экспертизе") на базе РС фирмы "Apple" с использованием современных достижений в области теории и практики экспертных оценок, в области прикладной математической статистики, прежде всего статистики объектов нечисловой природы. Список литературы 1. Орлов А.И. Допустимые ...
0 комментариев