Комбинаторные задачи.

1.Сколькими способами колода в 52 карты может быть роздана 13-ти игрокам так, чтобы каждый игрок получил по одной карте каждой масти? L

2. Сколькими способами можно расставить 10 книг на полке так, чтобы две определённые книги не стояли рядом? Чтобы три, четыре определенные книги не стояли рядом?

3. Сколькими различными способами можно рассадить за круглым столом 10 гостей? Один способ отличается от другого, если у кого-то из гостей меняется хотя бы один сосед.

4. Имеется пять кусков материи разных цветов. Сколько различных флагов можно скроить из этих кусков, если каждый флаг состоит из трёх горизонтальных полос разного цвета?

5. Каждая из n различных коммерческих организаций намеревается принять на работу одного из n выпускников коммерческого отделения факультета МЭО. В каждой из этих организаций выпускнику предлагается на выбор одна из k должностей. Сколько существует вариантов распределения этих n выпускников на работу?

5. Сколько можно составить различных семизначных телефонных номеров? Сколько будет номеров, у которых все цифры разные?

6. Каждый участник лотереи “6 из 49” должен записать в специальной карточке 6 любых чисел от 1 до 49. При розыгрыше лотереи комиссия случайным образом отбирает 6 чисел из чисел 1,2,,49. Участник, правильно угадавший все 6 чисел, получает большой приз. Участник, угадавший лишь 5 чисел, получает малый приз. Участник, угадавший лишь 4 числа, получает поощрительный приз. Сколькими различными способами можно заполнить карточку, чтобы получить малый приз? Чтобы получить поощрительный приз?

7. У одного человека есть 7 книг, а у другого — 9 книг. Сколькими способами они могут обменять три книги одного на три книги другого?

8. Бригада строителей состоит из 16-ти штукатуров и 4-х маляров. Сколькими способами бригаду можно разделить на две бригады, чтобы в одной из них было 10 штукатуров и 2 маляра, а в другой 6 штукатуров и 2 маляра?

9. Из отряда солдат в 50 человек, среди которых есть два рядовых–однофамильца Ивановы, назначают в караул 4-х человек. Сколькими различными способами может быть составлен караул? В скольких случаях в карауле будут два Ивановых? В скольких случаях в карауле будет один Иванов? Хотя бы один Иванов?

10. Сколькими способами можно разложить 10 книг на 5 бандеролей по две книги в каждой (порядок бандеролей не принимается во внимание)?

11. У Деда Мороза в мешке 10 различных подарков. Сколькими спосо­бами эти подарки могут быть розданы 7-ми детям? Решить ту же задачу в предположении, что все подарки одинаковы.

12. Сколькими способами можно разложить 6 одинаковых шаров по трём ящикам, если каждый ящик может вместить все шары?

13. В почтовом отделении продаются открытки 10 сортов. Сколькими способами можно купить в нём 12 открыток?

14. Нужно провести 4 экзамена по различным дисциплинам в течение
20-ти дней. Сколько существует вариантов расписания экзаменов, если временной промежуток между экзаменами должен быть не меньше 3-х дней? (4!)


6


Классическое определение вероятности.

1. Колода из 32-х карт тщательно перетасована. Найти вероятность того, что все четыре туза лежат в колоде один за другим, не перемежаясь другими картами.

Решение. Число всех возможных способов расположения карт в колоде равно 32! Чтобы подсчитать число благоприятных исходов, сначала представим себе, что четыре туза располагаются каким-то образом один за другим и склеиваются между собой так, что они, как бы составляют одну карту (неважно, что она оказалась толще, чем все остальные). В полученной колоде стало 32 – 4 + 1 = 29 карт. Карты в этой колоде можно расположить числом способов, равным 29! Количество всех благо­приятных исходов получается, если это число умножить на 4! – число возможных способов упорядочения четырёх тузов. Отсюда получаем ответ задачи: .

2. Между двумя игроками проводится n партий, причем каждая партия кончается или выигрышем, или проигрышем, и всевозможные исходы партий равновероятны. Найти вероятность того, что определённый игрок выиграет ровно m партий, 0  m  n.

Решение. Каждая партия имеет два исхода – выигрыш одного или другого участника. Для двух партий имеется 22 = 4 исходов, для трёх партий – 23 =8 исходов, для n партий – 2n исходов. Среди них ровно исходов соответствуют выигрышу одного из игроков m партий. Таким образом, искомая вероятность равна .

3. Бросается n игральных костей. Найти вероятность того, что на всех костях выпало одинаковое количество очков.

Решение. Общее число исходов здесь равно 6n. Число благоприятных исходов – 6. Ответ задачи: .

4. В урне a белых и b чёрных шаров (a  2; b  2). Из урны без возвращения извлекаются 2 шара. Найти вероятность того, что шары одного цвета.

Решение. Эта вероятность равна

5. В урне находятся a белых и b черных шаров. Шары без возвращения извлекаются из урны. Найти вероятность того, что k-й вынутый шар оказался белым.

Решение. Представим процесс случайного извлечения шаров из урны следующим образом: шары произвольным образом размещены по расположенным в ряд ячейкам, и извлекаются из ячеек один за другим слева направо. Тогда благоприятный исход наступает в том случае, когда в k-й ячейке лежит белый шар.

Всего возможно (a + b)! различных способов расположения шаров по ячейкам. Займём k-ю ячейку одним из белых шаров, что можно сделать a различными способами. Тогда остальные ячейки можно заполнить (a + b – 1)! способами, и получается, что число благоприятных исходов равно (a + b – 1)!a, а искомая вероятность – .

6. Найти вероятность того, что при размещении n различимых шаров по N ящикам заданный ящик будет содержать ровно k (0  k  n) шаров (все различимые размещения равновероятны).

Решение. Первый шар может быть размещён N различными способами, второй шар – тоже N различными способами, а два шара могут быть размещены по N ящикам числом способов, равным N2. Всего существует Nn вариантов размещения n различимых шаров по N ящикам. Выбрав определенный ящик, можно найти способов заполнить его набором k шаров, выбранных из множества n шаров. Остальные ящиков можно заполнить оставшимися n – k шарами числом способов, равным (N–1)n–k. Таким образом получаем, что число благоприятных исходов в задаче равно (N–1)n–k, а интересующая нас вероятность равна .

7. 10 букв разрезной азбуки: А,А,А,Е,И,К,М,М,Т,Т произвольным образом выкладываются в ряд. Какова вероятность того, что получится слово МАТЕМАТИКА?

Решение. 10 букв можно расположить в ряд числом способов, равным 10! Чтобы получить число благоприятных исходов, нужно взять слово МАТЕМАТИКА и убедиться в том, что его можно получить, переставляя местами 3 буквы А, 2 буквы М и 2 буквы Т, что можно сделать 3!2!2! способами Ответ задачи: 3!2!2!/10!.


Информация о работе «Серьёзные лекции по высшей экономической математике»
Раздел: Математика
Количество знаков с пробелами: 21664
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
186526
5
0

... – в постиндустриальном. В современной общественно-экономической литературе история рассматривается на этапах первобытной эпохи, рабовладельческого общества, средневековья, индустриального и постиндустриального общества. Экономической истории зарубежных стран посвящены многочисленные работы, среди которых одни носят обобщающий характер и рассматривают развитие какой-либо отрасли хозяйства в ...

Скачать
76653
2
0

... его творчества. Много лет спустя философ назовёт своё состояние в магистерские годы, свою приверженность к вольфианству «догматическим сном». Он запретит пользоваться своими ранними трудами, в том числе такими, как «Опыт некоторых рассуждений об оптимизме» (1759) и «Мысли магистра Иммануила Канта… по поводу безвременной кончины высокородного господина Функа» (1760), в которых он обосновывал идею ...

Скачать
349421
0
1

... ” дремавшие под их покровами нации: уже абсолютистские государства де-факто были национальными, хотя политическая система покоилась на феодальных династических основаниях, затемнявших новый факт европейской истории; близкородственные этнические группы совместной социально-экономической и политической, государственной жизнью сплачивались в политические нации. Революция сметя династии и систему ...

Скачать
91375
0
0

... и другое: экономическая теория не освободилась от примеси идеологии и не смогла стать чисто научной. 2.5 Социальные аспекты экономического образования студентов среднеспециального и высшего экономического образования   Экономическое и бухгалтерское образование на сегодняшний день является неотъемлемой частью учебного процесса во всех без исключения колледжах и институтах страны. Вот только ...

0 комментариев


Наверх