Метод решения уравнений Ньютона - Рафсона

2584
знака
6
таблиц
2
изображения

Метод Ньютона-Рафсона, также известный как Метод Ньютона, представляет собой обобщенный метод поиска корня уравнения

(1)

Примем x = xj в качестве j-го приближения к корню уравнения (1). Предположим, что xj не является решением. Следовательно, . Предположим также, что мы получили разложение в ряд Тейлора для уравнения (1) относительно точки x = xj:

(2)

Если примем в качестве следующего члена x = xj+1, то уравнение (2) будет иметь вид:

(3)

Теперь предположим, что справедливо необязательное допущение того, что предыдущее приближение xj было удовлетворительным, так что xj+1 - xj мало. Если это предположение верно, мы можем пренебречь членами более высокого порядка в уравнении (3), так как n-я степень малой величины значительно меньше, чем малая величина для n>=2. В этом случае уравнение (3) может быть аппроксимировано следующим образом:

(4)

Нашей целью является выбор такого xj+1, чтобы оно стало решением уравнения (1). Следовательно, если наше предыдущее предположение справедливо, xj+1 должно быть выбрано таким, что. Приравняв уравнение (4) к нулю и решив относительно xj+1, получим:

(5)

Уравнение (5) называется уравнением Ньютона - Рафсона. Если наше предположение, приведшее к выводу уравнения (5), справедливо, этот алгоритм будет сходящимся, но только в том случае, если точка начального приближения достаточно близка к точке решения. Геометрическая интерпретация сходящегося метода Ньютона - Рафсона приведена на рис. 1а.

а) метод сходится б) метод не сходится

Рис.1. Геометрическая интерпретация метода Ньютона - Рафсона

Однако, если точка начального приближения далека от точки решения, то метод Ньютона - Рафсона может не сходиться совсем. Геометрическая интерпретация не сходящегося метода Ньютона - Рафсона приведена на рис. 1б.

Алгоритм

Назначение: поиск решения уравнения (1)

Вход:

Начальное приближение x0

Точность (число итераций I)

Выход:

xI - решение уравнения (1)

Инициализация:

calculate f’(x0)

Шаги:

1. repeat:

2. calculate xi using (5)

3. let i=i+1

4. if i>I then break the cycle

end of repeat

Модификация алгоритма Ньютона для решения системы нескольких уравнений заключается в линеаризации соответствующих функций многих переменных, т. е. аппроксимации их линейной зависимостью с помощью частных производных. Например, для нулевой итерации в случае системы двух уравнений:

Чтобы отыскать точку, соответствующую каждой новой итерации, требуется приравнять оба равенства нулю, т.е. решить на каждом шаге полученную систему линейных уравнений.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.xaoc.ru/


Информация о работе «Метод решения уравнений Ньютона - Рафсона»
Раздел: Математика
Количество знаков с пробелами: 2584
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
78723
14
38

... работы со справочной системой работа практикума приостанавливается. 3.   Организационно-экономическое обоснование проекта В ходе дипломного проекта был разработан компьютерный лабораторный практикум по курсу «Теория оптимизации и численные методы». В данном разделе рассмотрена экономическая сторона проекта. Рассмотрены следующие вопросы: 1)         сетевая модель 2)         расчёт ...

Скачать
10711
0
8

... –0.6 = 0 9. 10. ( x -1)3 + 0.5ex = 0 11. 12. x5 –3x2 + 1 = 0 13. x3 –4x2 –10x –10 = 0 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. x 4- 2.9x3 +0.1x2 + 5.8x - 4.2=0 25. x4+2.83x3- 4.5x2-64x-20=0 26. МЕТОДЫ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 1.         Постановка задачи Пусть требуется решить систему n ...

Скачать
11806
0
10

... метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов. Целью данной курсовой работы является Лисп – реализация нахождения корней уравнения методом Ньютона. 1. Постановка задачи Дано уравнение: . Требуется решить это уравнение, точнее, найти один из его корней (предполагается, что ...

Скачать
139305
0
14

... при решении предусмотренных задач одна из эталонных схем (рабочая) копируется в рабочие файлы. Для моделирования, анализа и хранения режимов создана база режимов (до 12 режимов). Предусмотрена возможность записи произвольного режима, являющегося результатом решения одной из задач, в базу режимов. Все расчеты, включая и формирование отображаемых на дисплеях кадров, производятся на ЭВМ ИВП. В ИВП ...

0 комментариев


Наверх