Разработка отказоустойчивой операционной системы реального времени для вычислительных систем с максимальным рангом отказоустойчивости

Разработка отказоустойчивой операционной системы реального времени для вычислительных систем с максимальным рангом отказоустойчивости
Найти, подготовить и загрузить затребованную задачу; Управление взаимодействием частей системы (например, менеджеров процессов и файлов) Поддержка отказоустойчивости вычислительных систем средствами операционных систем реального времени ОС представляет собой совокупность информационно взаимосвязанных и согласовано функционирующих операционных систем каждого отдельного узла сети ВС Описание системных таблиц Модуль маршрутизатора Процедура голосования Инициализация Недостоверность переданной информации была вызвана кратковременным сбоем, при этом ПЭ1 получил достоверные результаты счета, а ПЭ3 – недостоверные Методика анализа отказов Оценка надежностных характеристик отказоустойчивой ВС Программное обеспечение модели отказоустойчивой ВС Программное обеспечение подсистемы проверки Обзор базовых ОСРВ для платформы TMS320C30 Проверка содержимого памяти Системные исследования Разработка алгоритмов Метод сквозного структурного контроля
148576
знаков
34
таблицы
0
изображений

Введение

В течение многих лет приложения на базе ОС реального времени использовались во встроенных системах специального назначения, а с недавнего времени они стали применяться повсюду, от бортовых систем управления ЛА, до бытовых приборов.

Разработка многопроцессорных вычислительных систем (ВС) как правило, имеет своей целью повышение либо уровня надежности, либо уровня производительности системы до значений недоступных или труднореализуемых в традиционных ЭВМ.

В первом случае на передний план встает вопрос о наличии специальных средств обеспечения отказоустойчивости вычислительных систем, основной особенностью (и достоинством) которых является отсутствие какого-либо единственного ресурса, выход из строя которого приводит к фатальному отказу всей системы.

Таким образом, объектом исследования в рамках сетевой отказоустойчивой технологии становится ОСРВ — управляющее программное обеспечение особого типа, которое используется для организации работы встроенных приложений, для которых характерны ограниченность ресурсов памяти, невысокая производительность, а также требования гарантированного времени отклика, высокого уровня готовности и наличия средств автомониторинга.

Данная дипломная работа посвящена разработке специализированной распределенной операционной системы реального времени для отказоустойчивых ВС с рангом отказоустойчивости N(N-1), что означает способность системы функционировать даже в том случае, если произойдут отказы всех элементов системы за исключением одного. Для полного освещения выбранной темы были поставлены следующие задачи:

Провести анализ существующих операционных систем реального времени, выделить основные функциональные требования к ним, дать сравнительную характеристику.

Раскрыть концепцию построения ОСРВ с рангом отказоустойчивости N-1, выделить основные модули операционной системы, функциональные требования к ним и алгоритмы работы.

Раскрыть логику организации отказоустойчивых вычислений на примере конкретной реализации.

Провести анализ надежности отказоустойчивой ВС и дать рекомендации по организации ВС.

Создать программную модель вычислительной системы с распределенной операционной системой реального времени и отработать на ней различные режимы работы.

Рассмотреть возможность портирования (переноса) ОСРВ на платформу TMS320c30, рассмотреть специфические проблемы и сложности при осуществлении портации.

В первой части работы дано краткое описание известных ОСРВ, описаны их функциональные возможности, структура, их направленность (специфические особенности). Также приведена сравнительная характеристика и отмечены те решения, которые можно было бы использовать для разработки собственной специализированной ОСРВ.

Во второй главе описана концепция построения распределенной ОСРВ, были сформулированы основные принципы функционирования перспективной вычислительной системы, включающие в себя многопроцессорность, обеспечение живучести, адаптацию к изменениям внутренних условий среды, поддержку реального масштаба времени, мобильность и открытость программного обеспечения. Предложен пример организации отказоустойчивых вычислений на примере пяти-узловой полносвязной сети ПЭ в условиях постоянной деградации системы.

Далее рассмотрена программная модель ВС и операционной системы, логика работы и взаимосвязь модулей.

В последней главе рассматриваются особенности аппаратной платформы TMS320c30, вопросы реализации вышеприведенных идей с помощью этой платформы, дополнение ОС специфическими для данной архитектуры модулями.


Специальная часть

Операционные системы реального времени.

ОС общего назначения, особенно многопользовательские, ориентированы на оптимальное распределение ресурсов компьютера между пользователями и задачами (системы разделения времени), В операционных системах реального времени (ОСРВ), подобная задача отходит на второй план - все отступает перед главной задачей - успеть среагировать на события, происходящие на объекте.


Описание и общие требования к системам реального времени.

Применение операционной системы реального времени всегда связано с аппаратурой, с объектом, с событиями, происходящими на объекте. Система реального времени, как аппаратно-программный комплекс, включает в себя датчики, регистрирующие события на объекте, модули ввода-вывода, преобразующие показания датчиков в цифровой вид, пригодный для обработки этих показаний на компьютере, и, наконец, компьютер с программой, реагирующей на события, происходящие на объекте. ОСРВ ориентирована на обработку внешних событий. Именно это приводит к коренным отличиям (по сравнению с ОС общего назначения) в структуре системы, в функциях ядра, в построении системы ввода-вывода. ОСРВ может быть похожа по пользовательскому интерфейсу на ОС общего назначения, однако устроена она совершенно иначе - об этом речь впереди.

Кроме того, применение ОСРВ всегда конкретно. Если ОС общего назначения обычно воспринимается пользователями (не разработчиками) как уже готовый набор приложений, то ОСРВ служит только инструментом для создания конкретного аппаратно - программного комплекса реального времени. И поэтому наиболее широкий класс пользователей ОСРВ - разработчики комплексов реального времени, люди проектирующие системы управления и сбора данных. Проектируя и разрабатывая конкретную систему реального времени, программист всегда знает точно, какие события могут произойти на объекте, знает критические сроки обслуживания каждого из этих событий.

Назовем системой реального времени (СРВ) аппаратно-программный комплекс, реагирующий в предсказуемые времена на непредсказуемый поток внешних событий.

Это определение означает, что:

Система должна успеть отреагировать на событие, произошедшее на объекте, в течение времени, критического для этого события. Величина критического времени для каждого события определяется объектом и самим событием, и, естественно, может быть разной, но время реакции системы должно быть предсказано (вычислено) при создании системы. Отсутствие реакции в предсказанное время считается ошибкой для систем реального времени.

Система должна успевать реагировать на одновременно происходящие события. Даже если два или больше внешних событий происходят одновременно, система должна успеть среагировать на каждое из них в течение интервалов времени, критического для этих событий.

Различают системы реального времени двух типов - системы жесткого реального времени и системы мягкого реального времени.

Системы жесткого реального времени не допускают никаких задержек реакции системы ни при каких условиях, так как:

результаты могут оказаться бесполезны в случае опоздания,

может произойти катастрофа в случае задержки реакции,

стоимость опоздания может оказаться бесконечно велика.

Примеры систем жесткого реального времени - бортовые системы управления, системы аварийной защиты, регистраторы аварийных событий.

Системы мягкого реального времени характеризуются тем, что задержка реакции не критична, хотя и может привести к увеличению стоимости результатов и снижению производительности системы в целом.

Основное отличие между системами жесткого и мягкого реального времени можно выразить так: система жесткого реального времени никогда не опоздает с реакцией на событие, система мягкого реального времени - не должна опаздывать с реакцией на событие.

Тогда операционная система реального времени - это такая ОС, которая может быть использована для построения систем жесткого реального времени. Это определение выражает отношение к ОСРВ как к объекту, содержащему необходимые инструменты, но также означает, что этими инструментами еще необходимо правильно воспользоваться.


1.2. Параметры ОСРВ
1.2.1. Время реакции системы

Почти все производители систем реального времени приводят такой параметр, как время реакции системы на прерывание (interrupt latency).

В самом деле, если главным для системы реального времени является ее способность вовремя отреагировать на внешние события, то такой параметр, как время реакции системы является ключевым.

События, происходящие на объекте, регистрируются датчиками, данные с датчиков передаются в модули ввода-вывода (интерфейсы) системы. Модули ввода-вывода, получив информацию от датчиков и преобразовав ее, генерируют запрос на прерывание в управляющем компьютере, подавая ему тем самым сигнал о том, что на объекте произошло событие. Получив сигнал от модуля ввода-вывода, система должна запустить программу обработки этого события.

Интервал времени - от события на объекте и до выполнения первой инструкции в программе обработки этого события и является временем реакции системы на события.

Обычно время реакции систем на прерывание составляет порядка 4-10 мкс.


1.2.2. Время переключения контекста

В операционные системы реального времени заложен параллелизм, возможность одновременной обработки нескольких событий, поэтому все ОСРВ являются многозадачными (многопроцессными, многонитиевыми).

Контекст задачи это набор данных, задающих состояние процессора при выполнении задачи. Обычно совпадает с набором регистров, доступных для изменения прикладной задаче.

При переключении задач (процессов) необходимо:

корректно остановить работающую задачу;

для этого

а) выполнить инструкции текущей задачи, уже загруженные в процессор, но еще не выполненные;

б) сохранить в оперативной памяти регистры текущей задачи;


Информация о работе «Разработка отказоустойчивой операционной системы реального времени для вычислительных систем с максимальным рангом отказоустойчивости»
Раздел: Информатика, программирование
Количество знаков с пробелами: 148576
Количество таблиц: 34
Количество изображений: 0

Похожие работы

Скачать
172056
0
5

... первичной или первичной вместе со вторичной или только вторичной И. Если это - итог обработки информации, решения задачи, то такая информация называется результативной, результирующей. В процессе решения задач возникает промежуточная информация, которая часто в автоматизированных системах играет самостоятельную роль, определения направления путей завершения решения задачи. Результатная информация ...

Скачать
200314
8
2

... , практически, не используются. Проблема информатизации Минторга может быть решена путем создания Автоматизированной Информационной системы Министерства Торговли РФ (АИС МТ РФ) в соответствии с настоящим Техническим предложением.   ГЛАВА 2. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА ЗАДАЧ "СИСТЕМА ДОКУМЕНТООБОРОТА УЧЕРЕЖДЕНИЯ”. функции поиска и архивации 2.1. Постановка задачи и её спецификация ...

Скачать
152655
7
3

... дейст­вий одной из них; • обращение к внешним устройствам только через операционную систему, что по­зволяет программистам использовать уже написанные драйверы, и не заниматься проблемами обеспечения совместимости с ними вновь разработанных программ; • возможность использования звуковых и видеоприложений. В отличие от Windows З.х новая операционная система не нуждается в установке на компьютере ...

Скачать
214673
1
8

... Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. М.: Госстандарт СССР. ГОСТ 31078-2002. Защита информации. Испытания программных средств на наличие компьютерных вирусов. Типовое руководство. СТБ ИСО/МЭК 9126-2003. Информационные технологии. Оценка программной продукции. Характеристики качества и руководства по их применению. СТБ ИСО/МЭК ТО ...

0 комментариев


Наверх