Обзор базовых ОСРВ для платформы TMS320C30

Разработка отказоустойчивой операционной системы реального времени для вычислительных систем с максимальным рангом отказоустойчивости
Найти, подготовить и загрузить затребованную задачу; Управление взаимодействием частей системы (например, менеджеров процессов и файлов) Поддержка отказоустойчивости вычислительных систем средствами операционных систем реального времени ОС представляет собой совокупность информационно взаимосвязанных и согласовано функционирующих операционных систем каждого отдельного узла сети ВС Описание системных таблиц Модуль маршрутизатора Процедура голосования Инициализация Недостоверность переданной информации была вызвана кратковременным сбоем, при этом ПЭ1 получил достоверные результаты счета, а ПЭ3 – недостоверные Методика анализа отказов Оценка надежностных характеристик отказоустойчивой ВС Программное обеспечение модели отказоустойчивой ВС Программное обеспечение подсистемы проверки Обзор базовых ОСРВ для платформы TMS320C30 Проверка содержимого памяти Системные исследования Разработка алгоритмов Метод сквозного структурного контроля
148576
знаков
34
таблицы
0
изображений

4.2 Обзор базовых ОСРВ для платформы TMS320C30


Для построения отказоустойчивой системы реального времени на базе процессора TMS320C30 необходимы базовые механизмы и средства, которые были перечислены в главе 1. В настоящее время существует достаточно много базовых ОСРВ для процессоров серии TMS320. Качественно они мало чем отличаются друг от друга, различия могут возникать из-за специфики применения этих ОСРВ. Приведем характеристики одной из самых известных ОСРВ, переносимых на TMS320C30.

Операционная система SPOX.

SPOX поддерживает несколько различных вариантов архитектур:

дополнительные вычислительные среды для рабочих станций;

однородные встраиваемые системы;

неоднородные встраиваемые системы;

персональные компьютеры с процессором Intel Pentium под управлением Microsoft Windows 95.

Среда SPOX состоит из четырех основных компонентов (рис. 4.1):

ядро SPOX (SPOX-KNL) обеспечивает вытесняющую приоритетную многозадачность, высокоскоростную обработку прерываний, распределение памяти, различные механизмы межзадачного обмена информацией и синхронизации, а также независимый от устройств ввод-вывод. Результатами тестирования SPOX-KNL стали следующие цифры:

Время захвата семафора – 7.9 мкс;

Время переключения задач одинакового приоритета – 15 мкс;

Время реакции на прерывание – 33 мкс;

Время завершения прерывания – 1.4 мкс;

Задержка диспетчеризации (время вытеснения задачи с большим приоритетом задачу с меньшим) – 12.24 мкс;

Время переключения контекста – 7 мкс;

Минимальный размер системы 1532 слова.

модуль SPOX-LINK поддерживает «прозрачное» взаимодействие между целевой платформой и хост-системой и дающее доступ к основным ресурсам хост-машины, таким как консоли, файловые системы и сети;

библиотека (SPOX-MATH) содержит свыше 175 математических функций;

высокоуровневый отладчик SPOX-DBUG.


Рис. 4.1. Структурная схема ОС SPOX


Все четыре подсистемы реализованы как библиотеки C-вызываемых перемещаемых модулей. При этом системные функции SPOX подключаются к объектному коду приложения на этапе связывания.

С помощью дополнительного модуля SPOX-MP становится возможной многопроцессорная обработка сигналов. Настройка на конкретную конфигурацию сети процессорных элементов задается в конфигурационном файле, что позволяет не привязываться к конкретной топологии в процессе разработки приложения. SPOX-MP обеспечивает динамическую передачу данных и сообщений по сети процессорных элементов, глобальное пространство имен, а также лавинообразную первоначальную загрузку сети.

Таким образом ОСРВ SPOX имеет необходимые механизмы для создания отказоустойчивой распределенной операционной системы реального времени, концепция построения которой описана в главе 2.


4.3 Аппаратно-зависимые компоненты ОСРВ


Модули маршрутизации, реконфигурации, голосования реализованы как аппаратно-независимые процедуры операционной системы. Модули оперируют данными, заданными в конфигурационном файле, что не привязывает их к конкретной топологии. Реализованные методом структурного программирования на языке Си, модули могут быть перенесены на большинство платформ, включая и TMS320C30.

Модуль коммуникации оперирует высокоуровневыми функциями обмена, опирающимися на драйвера операционной системы. Обмен данными осуществляется через последовательные порты с помощью встроенных механизмов передачи маркера между соседними процессорными элементами.

Зависимость программного обеспечения в рамках рассматриваемой операционной системы возникает на этапе самодиагностирования процессора с целью получения информации о своем состоянии.


4.3.1. Модуль диагностики ПЭ


Модуль диагностики, реализованный в виде набора функций, возвращающих код ошибки, призван решать следующие задачи:

На этапе инициализации:

Тестирование регистров общего назначения процессора;

Проверка правильности выполнения арифметических, логических и др. операций;

Занесение в соответствующую таблицу контрольных сумм неизменных во время выполнения программ областей памяти (исполняемый код, константы), размещение которых в памяти проводится на этапе сборки рабочего кода в соответствии с картой памяти;

Во время рабочего цикла, тестирование может проводиться как с прерыванием вычислений функциональных задач, так и непосредственно во время их выполнения, если предусмотрено процессорное время на выполнение этих тестов. При этом может осуществляться:

Тестирование регистров общего назначение;

Проверка правильности выполнения арифметических, логических и др. операций;

Вычисление контрольных сумм указанных областей памяти и сопоставление их с вычисленными на этапе инициализации.


4.3.1.1. Тестирование регистров общего назначения


Этот тест выполняется первым для проверки регистров повышенной точности (R0-R7) и вспомогательных регистров (АR0-АR7). Тестирование сводится к проверке регистров на запись/чтение из памяти/в память и проверке правильности перемещения данных из регистра в регистр. Тест разбивается на два этапа:

Проверка вспомогательных регистров (целочисленные значения). Проверка реализована по следующему алгоритму:

Инициализировать две целочисленные переменные начальным и ожидаемым значением тестирования;

Загрузить начальное значение в регистры (АR0-АR7).

Произвести операцию сложения так, что в каждом последующем регистре оказалась сумма предыдущих.

Запись в стек модифицированных регистров.

Произвести операцию сдвига влево содержимого стека на N разрядов в соответствии с номером записанного регистра.

Записать данные из стека в регистры.

Произвести операцию сложения так, что в каждом последующем регистре оказалась сумма предыдущих.

Сравнить содержимое регистра АR7 с ожидаемым, заранее рассчитанным значением.

Проверка регистров повышенной точности (значения с плавающей точкой) проводится аналогично.

Функция register_test реализована на языке Ассемблер в соответствии с архитектурой и системой команд TMS320C30.


4.3.1.2. Проверка правильности выполнения арифметических, логических и др. операций


Данный тест разделен на три различных модуля. Вместе они проверяют следующие числовые операции:

1. Логические, сдвиг, циклический сдвиг.

2. Операции с плавающей запятой, выполненные над одним значением и соответствующие параллельные команды.

3. Операции с плавающей запятой и целочисленные, выполняющие сложение, вычитание, и умножение и соответствующие параллельные команды.

В тестах проверяются команды, перечисленные в Таблице 4.1.

Таблица 4.1

Перечень тестируемых команд


Тест

Команды

1

2

Тест 1

ROL – циклический сдвиг влево,

ROLC – циклический сдвиг влево через перенос,

ROR – циклический сдвиг вправо,

RORC – циклический сдвиг вправо через перенос,

AND3 || STI – поразрядное логическое И с сохранением,

LSH3 || STI – логический сдвиг с сохранением,

NOT || STI – дополнение с сохранением,

OR3 || STI – поразрядное логическое ИЛИ с сохранением,

XOR3 || STI – поразрядное исключающее ИЛИ с сохранением,

ABSI || STI – абсолютное значение целого с сохранением,

NEGI || STI – отрицание целого с сохранением,

ASH3 || STI – арифметический сдвиг с сохранением,

1

2


NOT – поразрядное логическое дополнение,

ABSI – абсолютное значение целого числа,

NEGB – отрицание целого с заемом,

ASH – арифметический сдвиг,

NEGI – отрицание целого,

TSTB3 – проверка битовых полей,

CMPI3 – сравнение целых,

STI || STI – сохранение целых,

LDI || LDI – загрузка целых,

XOR – поразрядное исключающее ИЛИ.

Тест 2

STF – сохранить значение с плавающей точкой,

LDF – загрузить значение с плавающей точкой,

LDE – загрузка значения экспоненты с плавающей точкой,

LDM – загрузка значения мантиссы с плавающей точкой,

FIX – преобразование в целое,

FLOAT – преобразование в значение с плавающей точкой,

ABSF – абсолютное значение числа с плавающей точкой,

NEGF – отрицание значения с плавающей точкой,

NORM – нормирование значения с плавающей точкой,

RND – округление значения с плавающей точкой,

POPF – выталкивание значения с плавающей точкой из стека,

PUSHF – загрузка в стек значения с плавающей точкой,

ABSF || STF – абсолютное значение числа с плавающей точкой с сохранением значения с плавающей точкой,

FIX || STI – преобразование в целое с сохранением,

FLOAT || STF – преобразование в значение с плавающей точкой с сохранением значения с плавающей точкой,

PUSH – загрузка целого в стек,

POP – выталкивание целого из стека,

LDF || STF – загрузить значение с плавающей точкой с сохранением значения с плавающей точкой,


1

2


NEGF || STF – отрицание значения с плавающей точкой с сохранением значения с плавающей точкой,

STF || STF – сохранения значений с плавающей точкой,

LDF || LDF – загрузка значений с плавающей точкой.

Тест 3

SUBF3 – вычитание значений с плавающей точкой,

SUBF3 || STF – значения с плавающей точкой с сохранением значения с плавающей точкой,

SUBB – вычитание целых с заемом,

SUBC – условное вычитание целых,

SUBF – вычитание значений с плавающей точкой,

SUBRB – вычитание целых в обратном порядке с заемом,

SUBRF - вычитание с плавающей точкой в обратном порядке,

SUBI3 || STI – вычитание целых с сохранением,

ADDC – сложение целых с переносом,

ADDF – сложение значений с плавающей точкой,

ADDF3 – сложение значений с плавающей точкой,

ADDF3 || STF – значений с плавающей точкой с сохранением значения с плавающей точкой,

ADDI3 || STI – сложение целых с сохранением,

MPYF- умножение значений с плавающей точкой,

MPYF3 – умножение значений с плавающей точкой,

MPYI – умножение целых,

MPYF3 || STF – умножение значений с плавающей точкой с сохранением значения с плавающей точкой,

MPYF3 || ADDF3 – умножение и сложение с плавающей точкой,

MPYF3 || SUBF3 умножение и вычитание с плавающей точкой,

MPYI3 || STI – умножение целых с сохранением,

MPYI3 || ADDI3 – умножение и сложение целых,

MPYI3 || SUBI3 – умножение и вычитание целых,

CMPF – сравнение значений с плавающей точкой,

CMPF3 - сравнение значений с плавающей точкой.


Проверка осуществляется с помощью фиксированного набора значений с целью тестирования команд в различных пределах. Вывод о успехе/неуспехе делается на основе контрольного суммирования результатов и сопоставления с ожидаемым значением.



Информация о работе «Разработка отказоустойчивой операционной системы реального времени для вычислительных систем с максимальным рангом отказоустойчивости»
Раздел: Информатика, программирование
Количество знаков с пробелами: 148576
Количество таблиц: 34
Количество изображений: 0

Похожие работы

Скачать
172056
0
5

... первичной или первичной вместе со вторичной или только вторичной И. Если это - итог обработки информации, решения задачи, то такая информация называется результативной, результирующей. В процессе решения задач возникает промежуточная информация, которая часто в автоматизированных системах играет самостоятельную роль, определения направления путей завершения решения задачи. Результатная информация ...

Скачать
200314
8
2

... , практически, не используются. Проблема информатизации Минторга может быть решена путем создания Автоматизированной Информационной системы Министерства Торговли РФ (АИС МТ РФ) в соответствии с настоящим Техническим предложением.   ГЛАВА 2. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА ЗАДАЧ "СИСТЕМА ДОКУМЕНТООБОРОТА УЧЕРЕЖДЕНИЯ”. функции поиска и архивации 2.1. Постановка задачи и её спецификация ...

Скачать
152655
7
3

... дейст­вий одной из них; • обращение к внешним устройствам только через операционную систему, что по­зволяет программистам использовать уже написанные драйверы, и не заниматься проблемами обеспечения совместимости с ними вновь разработанных программ; • возможность использования звуковых и видеоприложений. В отличие от Windows З.х новая операционная система не нуждается в установке на компьютере ...

Скачать
214673
1
8

... Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. М.: Госстандарт СССР. ГОСТ 31078-2002. Защита информации. Испытания программных средств на наличие компьютерных вирусов. Типовое руководство. СТБ ИСО/МЭК 9126-2003. Информационные технологии. Оценка программной продукции. Характеристики качества и руководства по их применению. СТБ ИСО/МЭК ТО ...

0 комментариев


Наверх