1 группировка.

Таблица 2

Средний балл по итогам экзаменов за 1 курс, баллы Число студентов % к итогу

Fi

[3-3,5] 9 18 9
[3,5-4] 3 6 12
[4-4,5] 15 30 27
[4,5-5] 23 46 50
Итог: 50 100

Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле:

 h = R / n = (X max – X min) / n = (5-3) / 4 = 0,5

гистограмма: кумулята:


считаем по несгруппированным данным для большей точности:

Х = (4,7 + 4,5 + 4,2 + 4,2 +4,5 + 4,2 + 4,0 + 4,7 + 4,6 + 4,7 + 3,5 + 4,0 + 3,2 + 4,0 + 3,2 + 3,5 + + 4,8 + 4,6 + 4,5 + 4,5 + 4,2 + 4,5 + 4,2 + 4,8 + 4,0 + 4,2 + 3,0 + 3,2 + 4,8 + 4,8 + 4,3 + 4,5 + 4,7 + 4,2 + 4,6 + 3,0 + 3,0 + 4,0 + 4,7 + 3,5 + 4,7 + 4,5 + 3,2 + 4,5 + 4,8 + 3,2 + 3,0 + 4,5 + 4,7) / 50 = 4,27 (балла)

Ме = x0 + D Ме (N/2 – F(x0) / NMe

Me = 4+ 0,5 (25 –12) / 15 = 4,4 (балла)

Мо = х0 + D Мо (NМо – NМо-1) / (NМо – NМо-1) + (NМо – NМо+1)

Mo = 4,5 + 0,5 (25-15) / ((23-15) + (23-0)) = 4,6 (балла)

D = å (xi– x)2 / n считаем по несгруппированным данным.

D = 0,3 (кв. балла)

bx= ÖD

bx= Ö0,3 = 0,55 (балла)

V = bx/ x × 100%

V = (0,55 / 4,27) × 100% = 128%

R = xmax – xmin

R = 5 – 3 = 2 (балла)

Вывод: средний балл зачётки по итогам экзаменов за 1-ый курс для данной совокупности составляет 4,27 балла. Т. к. коэффициент вариации является величиной незначительной (128%), можно предполагать, что такой средний балл является типичным для данной совокупности. Наиболее распространённым является балл зачётки 4,6 балла. Средний балл у 50% студентов не больше 4,4 балла.


Группировка 2

Таблица 3

Посещаемость, ч/нед Число студентов, чел % к итогу Fi
[6-10] 9 18 9
[10-14] 8 16 17
[14-18] 15 30 32
[18-22] 18 36 50
Итог: 50 100

Разбиение на интервалы аналогично группировке 1.

Для несгруппированных данных, значит более точный результат.

Х = å xi/ n

X = 16, 13 (ч/нед)

Ме = x0 + D Ме (N/2 – F(x0) / NMe

Ме = 14 + 4 (25 – 17) / 15 = 17,3 (ч/нед)

D = å (xi – x)2 / n

D = 19,4 ((ч/нед)2)

bx= ÖD = 4,4 (ч/нед)

V = bx / x × 100% = (4,4 / 16,13) × 100% = 27,2%

R = xmax – xmin

R = 22 – 16 = 16 (балла)

Вывод: средняя посещаемость в группах составляет 16,13 ч/нед (70% от часов в неделю назначенных расписанием). Коэффициент вариации является величиной незначительной (28,6%), следовательно. Такая средняя посещаемость типична для студентов данной совокупности. Большинство студентов посещало 17,3 ч/нед. Посещаемость занятий у 50% студентов меньше 19 ч/нед, у 50% больше 19 ч/нед.


Группировка 3

Таблица 4

Самообразование, курсы (ч/нед) Число студентов % к итогу Fi
0 25 50 25
2 8 16 33
3 2 4 35
4 6 12 41
5 2 4 43
6 7 14 50
Итог: 50 100

Полегон частот:  кумулята


Х = å xi ji / å ji = (0 × 25 + 2 × 8 + 3 × 2 + 4 × 6 + 5 × 2 + 6 × 7) / 50 = 1,96 (ч/нед)

NMe = (n+1) / 2  = 51 / 2 = 25,5

Me = x NMe ; Me = 2 (ч/нед) ; Мо = 0 (ч/нед)

D = å (xi – x)2 ji / å jI  = ((0 – 1,96)2 × 25 + (2 – 1,96)2 × 8 + (3 – 1,96)2 × 2 + (4 – 1,96)2 × 6 + (5 – 1,96)2 × 2 + (6 – 1,96)2 × 7) / 50 = 5,1 (ч/нед)2

bx= 2,26 (ч/нед)

V = (2,26 / 1,96) × 100% = 115%

R = 6 – 0 = 6 (ч/нед)

Вывод: среднее количество часов, затраченное студентами на самообразование 1,96 ч/нед. Т. к. коэффициент вариации является величиной значительной (115%), то среднее количество является не типичным для данной совокупности. Наиболее распространённым является количество часов самообразования равное 0 ч/нед. Ровно половина из 50 опрошенных студентов не занимались на первом курсе дополнительным самообразованием.


Группировка 4

Таблица 5

Подготовка к семинарам, ч/нед Число студентов % к итогу Fi
[0-3] 21 42 21
[3-6] 18 36 39
[6-9] 8 16 47
[9-12] 3 6 50

Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле: h = R / n. h = 3.

Х = å xi/ n

Х = 4,08 (ч/нед)

Ме = 3 + 3 (25 – 21) / 18 = 3,6 (ч/нед)

Мо = 0 + 3 (21 – 0) / ((21 – 0) + (21 – 8)) = 1,85 (ч/нед)

D = å (xi – x)2 / n

D = 7,2 ((ч/нед)2)

bx= 2,7 (ч/нед)

V = (2,7 / 4,08) × 100% = 65,6%

R = 12 – 0 = 12 (ч/нед)

Вывод: среднее время, затраченное на подготовку к семинарским занятиям у студентов на 1 курсе 4,08 ч/нед. Т. к. коэффициент вариации является величиной значительной, то среднее время подготовки является величиной не типичной для данной совокупности студентов. Наиболее распространённым количеством часов на подготовку равно 1,85 ч/нед. Число студентов, занимающихся больше 3,6 ч/нед равно числу студентов, занимающихся подготовкой к занятиям больше 3,6 ч/нед.

Группировка 5

Таблица 6

Сон, ч/сутки Число студентов % к итогу Fi
5 6 12 6
6 3 6 9
7 13 26 22
8 11 22 33
9 8 16 41
10 9 18 50
Итог: 50 100

 


X = (5 6 + 6 3 + 7 13 + 8 11 + 9 8 + 10 9) / 50 = 7,78 (ч/сут)

NMe = (n+1) / 2 Me = 8 (ч/сут)

Мо = 7 (ч/сут)

D = å (xi – x)2 ji / å jI

D = 2,4 ((ч/сут)2)

bx= 1,55 (ч/сут)

V = (1,55 / 7,78) × 100% = 19,9%

R = 10 – 5 = 5 (ч/сут)

Вывод: среднее значение часов сна 7,78 ч/сутки. Т. к. коэффициент вариации является величиной незначительной (19,9%), то такое среднее значение часов сна является типичным для данной совокупности. Наиболее распространённым является количество часов сна 7 ч/сутки. Количество студентов, которые спят больше 8 ч/сутки равно количеству студентов, спящих меньше 8 ч/сут.


Группировка 6

Таблица 7

пол Число студентов, чел % к итогу Fi
Ж 33 66 30
М 17 34 50
Итог: 50 100


Вывод: из таблицы видно, что большинство опрошенных студентов женского пола.


Группировка 7

Таблица 8

Нравятся ли занятия на 1 курсе Число студентов, чел % к итогу Fi
Да 30 60 30
Нет 20 40 50
Итог: 50 100

Вывод: из таблицы видно, что большинству студентов данной совокупности нравились занятия на 1 курсе в академии.


Комбинационные группировки.

Таблица 9

сон Средний балл зачётки Всего
3 3,2 3,5 4 4,2 4,3 4,5 4,6 4,7 4,8
5 0 1 0 2 0 0 0 1 1 1 6
6 0 0 0 0 1 0 0 0 2 0 3
7 1 0 2 1 1 2 2 0 3 1 13
8 0 1 1 1 3 0 2 0 0 1 11
9 1 1 0 2 1 0 2 0 0 1 8
10 2 2 0 0 1 0 2 0 1 1 9
Итог: 4 5 3 6 7 2 8 3 7 5 50

Вывод: из таблицы видно, что наиболее крупные элементы расположены близко к побочной диагонали. Следовательно, зависимость между признаками близка к обратной.

Таблица 10

Посещаемость Средний балл зачётки Всего
3 3,2 3,5 4 4,2 4,3 4,5 4,6 4,7 4,8
[6-10] 2 3 0 0 1 0 0 2 1 0 9
[10-14] 0 0 2 3 1 0 0 0 1 0 7
[14-18] 2 2 1 1 2 1 3 1 1 1 15
[18-22] 0 0 0 2 3 1 5 0 4 4 19
Итог: 4 5 3 6 7 2 8 3 7 5 50

Вывод: из таблицы видно, что наибольшие элементы расположены близко к главной диагонали. Следовательно, зависимость между признаками близка к прямой.


Аналитические группировки.

Группировка 1

Таблица 11

Введём обозначения:

1.         неудовлетворительная подготовка к занятиям [0-3]

2.         удовлетворительная [3-6]

3.         хорошая [6-9]

4.         отличная [9-12]

Подготовка к занятиям Число студентов, чел Средний балл зачётки за 1 курс
Неудовлетворительная 21 3,7
Удовлетворительная 18 4,3
Хорошая 8 4,4
Отличная 3 4,5
Всего: 50

Вывод: из таблицы видно, что зависимость между фактором и признаком существует.

Группировка 2

Таблица 12

Введём обозначения:

1.         1/3 всех занятий [6-12] ч/нед

2.         половина [12-18] ч/нед

3.         все занятия [18-22] ч/нед

Посещаемость занятий Число студентов, чел Средний балл зачётки за 1 курс
1/3 всех занятий 13 3,3
половина 19 4,0
все занятия 18 4,5
Всего: 50

Вывод: из таблицы видно, что зависимости между признаком-фактором и признаком-результатом явной нет.


Группировка 3

Таблица 13

Самообразование Число студентов, чел Средний балл зачётки за 1 курс
Посещали доп. курсы 25 4,2
Не посещали доп. курсы 25 4,0

 

Вывод: не наблюдается явной зависимости между признаком-фактором и признаком результатом.


Лабораторная работа № 2

Тема: Корреляционный анализ, множественная линейная регрессия.

Цель: выбор оптимальной модели многофакторной регрессии на основе анализа различных моделей и расчитан для них коэффициентов множественной детерминации и среднеквадратических ошибок уравнения многофакторной регрессии.

Корреляционная матрица

Таблица 1

0 1 2 3 4
0 1 0,572 0,115 0,486 0,200
1 0,572 1 0,218 0,471 -0,112
2 0,115 0,218 1 0,452 -0,048
3 0,438 0,471 0,452 1 -0,073
4 -0,2 -0,112 -0,048 -0,073 1

Где х0 – средний балл зачётки (результат), х1 – посещаемость занятий, х2 – самообразование (доп. курсы), х3 – подготовка к семинарским занятиям, х4 – сон.

Введём обозначения признаков-факторов: 1 – посещаемость занятий на 1 курсе (ч/нед); 2 – самообразование (ч/нед); 3 – подготовка к семинарским и практическим занятиям (ч/нед); 4 – сон (ч/сут); 0 – средний балл зачётки по итогам экзаменов за 1 курс.

Расчётная таблица для моделей многофакторной регрессии.

Таблица 2

Модель многофакторной регрессии

R2

E2

1-2-3-4 0,39 0,45
1-2-3 0,37 0,46
2-3-4 0,23 0,51
1-3-4 0,38 0,45
1-2 0,33 0,47
1-3 0,36 0,46
1-4 0,35 0,47
2-3 0,20 0,52
2-4 0,05 0,56
3-4 0,22 0,51

По трём критериям выбираем оптимальную модель.

1.         число факторов минимально (2)

2.         max R, R = 0,36

3.         min E, E = 0,46

Следовательно, оптимальной моделью является модель 1-3. Значит, признаки-факторы «посещаемость занятий на 1 курсе» и «подготовка к семинарским занятиям» влияют значительнее других факторов на признак-результат.

Среднеквадратическая ошибка уравнения многофакторной регрессии небольшая по сравнению с ошибками, рассчитанными для других моделей многофакторной регрессии.

Составляю для этой модели уравнение регрессии в естественных масштабах.

Х0/1,3 = a + b1x1 + b3x3

Корреляционная матрица.

Таблица 3

0 1 3
0 1,00 0,57 0,48
1 0,57 1,00 0,47
3 0,43 0,47 1,00

t0/1,3 = b1t1 + b3t3

0,57 = b1 + 0,47b3 0,57 = b1 + 0,47(0,44 – 0,47b1) b1 = 0,4

0,44 = 0,47b1 + b3 b3 = 0,44 – 0,47b1 b3 = 0,25

t0/1,3 = 0,4t1 + 0,25t3

b1 = (d0 / dx1) b1 = (0,47 / 4,4) 0,4 = 0,071

b3 = (d0 / dx3) b3 = (0,79 / 2,68) 0,25 = 0,073

a = x0 – b1x1 – b3x3 = 4,27 – 0,071 × 16,13 – 0,073 × 4,08 = 2,8

имеем: х0/1,3 =2,8 + 0,071х1 + 0,073х3 – уравнение линейной множественной регрессии.

R0/1,3 = Öb1r01 + b3r03

R0/1,3 = Ö0,4 × 0,58 + 0,25 × 0,48 = 0,6

Вывод: коэффициент b1 говорит о том, что признак-результат—средний балл зачётки за 1 курс на 0,4 долю от своего среднеквадратического отклонения (0,4 × 0,79 = 0,316 балла) при изменении признака-фактора—посещаемости на 1 курсе на одно своё СКО (4,4 ч/нед).

b3 – средний балл зачётки изменится на 0,25 долю от своего СКО (0,25 0,79 = 0,179 балла) при увеличении признака-фактора—подготовки к семинарским занятиям на одно своё СКО (2,68 ч/сут).

Т. к. b1 <b3, следовательно фактор 1—посещаемость занятий влияет на средний балл зачётки больше, чем фактор 3—подготовка к занятиям.

R2 говорит о том, что 36% общей вариации значений среднего балла зачётки на 1 курсе вызвано влиянием посещаемости и подготовки к занятиям. Остальные 60% вызваны прочими факторами.

R = 0,58 свидетельствует о том, что между посещаемостью занятий и подготовкой к ним и средним баллом зачётки существует заметная линейная зависимость.

Коэффициент b1 говорит о том, что если посещаемость занятий увеличится на 1 ч/нед, то средний балл зачётки увеличится в среднем на 0,071 балла, при условии неизменности всех остальных факторов. b2 говорит о том, что если подготовка к занятиям увеличится на 1 ч/нед, то средний балл зачётки в среднем увеличится на 0,073 балла.


b1 = 0,4 b3 = 0,25

r01 = 0,52

r03 = 0,44


r13 = 0,47

Граф связи признаков-факторов: х2 – подготовки к семинарским занятиям, ч/нед; х1 - посещаемости занятий, ч/нед с признаком-результатом х0 – средним баллом зачётки по итогам экзаменов за 1 курс.

b1 – мера непосредственного влияния на признак-результат посещаемости занятий.

b3 – мера непосредственного влияния подготовки к занятиям на средний балл зачётки.

r01 = b1 + r13b3, где r01 – общее влияние х1 на r13b3 – мера опосредованного влияния х1 черезх3 на х0.

r01 = 0,4 + 0,47 × 0,25 = 0,52

r03 = b3 + r31b1, где r03 – общее влияние х3 на r31b1 – мера опосредованного влияния х3 черезх1 на х0.


Лабораторная работа № 3.

Тема: «Дисперсионное отношение. Эмпирическая и аналитическая регрессии.»

Цель: выявление зависимости между признаками-факторами и признаком-результатом.

Таблица с исходными данными.

Таблица 1

Средний балл за­чётки по итогам экзаменов за 1-ый курс (баллы) Посещаемость занятий на первом курсе (ч/нед) Самообразование (доп. Курсы) (ч/нед) Подготовка к семинар­ским заня­тиям (ч/нед)
4,7 19,5 0 5
4,5 22 2 6
4,2 22 0 2
4,3 19,5 0 7
4,5 17,5 0 3
4,2 9,5 6 12
4,0 12,5 0 5
4,7 22 4 7
4,6 17,5 3 4
4,7 9,5 0 2
4,5 11,5 6 3
4,0 11,5 2 3
4,2 19,5 4 8
4,0 20,5 6 9
3,2 9,5 0 0
4,0 17,5 0 8
3,2 14,5 0 2
3,5 14,5 0 2
4,8 22 0 10
4,6 8,5 0 1
4,5 22 0 4
4,5 22 6 2
4,2 17,5 4 4
4,5 14,5 6 4
4,2 11,5 2 2
4,8 17,5 0 4
4,0 10,5 0 2
4,2 17,5 2 6
3,0 9,5 0 0
4,8 19,5 2 2
4,8 19,5 2 6
4,3 17,5 4 2
3,2 6,0 0 0
4,5 22 2 5
4,7 22 4 3
4,2 22 3 5
4,6 9,5 0 1
3,0 14,0 0 2
3,0 6,5 0 5
4,0 22 2 5
4,7 17,5 6 0
3,5 11,5 0 6
4,7 22 6 2
4,5 22 0 0
3,2 17,5 4 8
4,8 22 0 0
3,2 9,5 0 5
4,5 17,5 0 3
3,0 14,5 5 3
4,7 11,5 5 3

Рассматриваю первую пару признаков: признак-фактор—посещаемость занятий на 1 курсе (ч/нед) и признак-результат—средний балл зачётки по итогам экзаменов за 1 курс (баллы). Далее обосную взаимосвязь между ними.

Расчётная таблица №1

Таблица 2

Посещаемость занятий (ч/нед) Число наблюдений

xi

yi

dyi

d2yi

d2yi ji

yi - y

(yi–y)2jI

[6-10] 9 8,6 3,7 0,71 0,5 4,5 -0,5 2,25
[10-14] 8 11,5 4,1 0,38 0,14 1,12 -0,1 0,08
[14-18] 15 16,4 3,7 1,01 1,02 15,3 -0,5 3,75
[18-22] 18 19,6 4,4 0,31 0,09 1,62 0,4 2,88
Сумма 50 - - - - 22,54 - 8,96
Средняя - 15,3 4,0 - - 5,6 - 2,24

d2y = (å(yi–y)2jI)

d 2y = 8,96 / 50 = 0,1792 (балла)2

E2y= (åб2yijI) / åjI

E2y = (4,5 + 1,12 + 15,3 + 1,62) / 50 = 0,4508(балла)2

б2y = E2y + d 2y = 0,4508 + 0,1792 = 0,63 (балла)2

r2 = d 2y / б2y = 0,1792 / 0,63 = 0,28 (0,28%)

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI) / åjI = 62,52

б2x = 19,4 (ч/нед)2

b = (xy – x y) / б2x = (62,52 – 15,3 × 4,0) / 19,4 = 0,068

a = y – bx = 4,0 – 0,068 × 15,3 = 2,96

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от посещаемости: строим по двум точкам

yx= 2,96 + 0,068х

yx = 2,96 + 0,068 × 6 = 3,358 yx = 2,96 + 0,068 × 22 = 4,446

rxy = (xy – x y) / бxбy = 0,37


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Распределение среднего балла зачётки за 1 курс по признаку-фактору—посещаемости занятий на 1 курсе.

Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—посещаемостью. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением посещаемости занятий на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,068 балла. rxyговорит о том, что между признаком-результатом и признаком-фактором заметная линейная связь.


Рассматриваю вторую пару признаков:

Расчётная таблица № 2.

Таблица 3

Подготовка к семинарским занятиям (ч/нед) Число наблюдений

xi

yi

dyi

d2yi

d2yi ji

yi - y

(yi–y)2ji

[0-3] 20 1,2 3,78 0,63 0,39 7,8 -0,22 0,96
[3-6] 18 4,0 4,31 0,45 0,2 3,6 0,31 1,72
[6-9] 9 6,8 4,46 0,28 0,07 0,63 0,46 1,9
[9-12] 2 9,5 4,4 0,399 0,15 0,3 0,4 0,32
Сумма 50 - - - - 2,33 - 4,9
средняя - 3,5 4,0 - - 3,08 - 1,2

d2y = (å(yi–y)2jI)

d 2y = 4,9 / 50 = 0,098 (балла)2

E2y= (åб2yijI) / åjI

E2y = 12,33 / 50 = 0,25 (балла)2

б2y = E2y + d 2y = 0,35 (балла)2

r2 = d 2y / б2y = 0,098 / 0,35 = 0,28 (0,28%)

r = 0,53

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI) / åjI

xy = 15,2

б2x = 7,2 (ч/нед)2

b = (xy – x y) / б2x = (15,2 – 3,5 × 4,0) / 7,2 = 0,16

a = y – bx = 4,0 – 0,16 × 3,4

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от подготовки к семинарским занятиям:

yx= 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бxбy = (15,2 – 14) / 2,6 = 0,46


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Распределение среднего балла зачётки за 1 курс по признаку-фактору—подготовке к семинарским занятиям.

Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—подготовкой к семинарским занятиям. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением подготовки к занятиям на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,16 балла. rxyговорит о том, что между признаком-результатом и признаком-фактором есть умеренная линейная связь.


Рассматриваю третью пару признаков:

Расчётная таблица № 3

Таблица 4

Самообразование (ч/нед) Число наблюдений

xi

yi

dyi

d2yi

d2yi ji

yi - y

(yi–y)2ji

0 25 0 4,07 0,68 0,46 11,5 -0,03 0,022
2 8 2 4,38 0,3 0,09 0,72 0,28 0,62
3 2 3 4,40 0,2 0,04 0,08 0,3 0,18
4 6 4 4,22 0,5 0,25 1,5 0,12 0,08
5 2 5 3,35 0,35 0,12 0,24 -0,75 1,16
6 7 6 3,3 0,40 0,16 1,12 0,2 0,28
Сумма 50 - - - - 15,88 - 2,34
средняя - 1,96 4,1 - - 0,31 - 0,39

d2y = (å(yi–y)2jI)

d 2y = 2,34 / 50 = 0,046 (балла)2

E2y= (åб2yijI) / åjI

E2y = 15,88 / 50 = 0,31 (балла)2

б2y = E2y + d 2y = 0,31 + 0,046 = 0,36 (балла)2

r2 = d 2y / б2y = 0,046 / 0,36 = 0,13 (13%)

r = 0,36

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI) / åjI

xy = 8,22

б2x = 5,1 (ч/нед)2

b = (xy – x y) / б2x = (8,22 – 8,036) / 5,1 = 0,032

a = y – bx = 4,1 – 0,032 × 1,96 = 4,03

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от самообразования:

yx= 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бxбy = (8,2 – 8,036) / 2,25 × 0,6 = 0,12


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Вывод: r2 свидетельствует о том, что 13% общей вариации результативного признака вызвано влиянием признака фактора—самообразованием. Можно сказать, что это очень слабая корреляционная связь. Зная коэффициент b, предполагаем, что для данной совокупности студентов с увеличением самообразования на 1 ч/нед средний балл зачётки увеличивается на 0,032 балла. rxyговорит о том, что между признаком-результатом и признаком-фактором есть слабая прямая линейная связь.


Министерство Высшего Образования РФ

Санкт-Петербургский Государственный Инженерно-Экономический Университет

Лабораторные работы По статистике

Студентки 1 курса

Группы 3292

Специальность коммерция

Харькиной Анны.

Преподаватель: Карпова Г. В.

Оценка:

СПб 2001


Информация о работе «Курсовая работа»
Раздел: Статистика
Количество знаков с пробелами: 20963
Количество таблиц: 27
Количество изображений: 0

Похожие работы

Скачать
111865
8
25

... перешли к построению графиков. Это осуществляется с помощью Мастера диаграмм. Построили графики, указанные в задании. Описание построения графиков и диаграмм можно увидеть в теоретических сведениях курсовой работы по информатике. Перешли к построению схемы нефтяного терминала, что будет рассмотрено в теоретических частях нашей курсовой работы ниже по тексту. 5. Значения ячеек таблицы, содержащих ...

Скачать
12135
2
2

... окружности, представляющие собой клубни дыма, которые увеличиваются при подъёме.   2. Описание программы .   2.1. Метод решения задачи . Программа выполнена в стиле объектно-ориентированного программирования, использованна библиотека MFC. Сама программа - приложение Windows. Для вывода графических объектов используются функции: Elliplse, Rectangle. Программой обрабатываются события ...

Скачать
29474
18
0

... Для повышения наглядности содержания работы должна быть насыщена таблицами и схемами, которые следует нумеровать. В заключении следует сделать общие выводы. Тематика курсовых работ по управленческому учетуна 2003-2004 уч. год 1. Управленческий учет на добывающих предприятиях (шахтах, угольный карьер, карьер стройматериалов, добыча алмазов, золота, нефти, леса и др.) 2. Управленческий учет на ...

Скачать
44940
4
1

... освіти. Освітньо-професійна программа підготовки бакалавра напряму підготовки 0502 “Менеджмент”. Проект. МНО України. К. 1999 рік. 3.   Василенко В.А., Агалаков Н.М., Цехла С.Ю. Методические указания к выполнению курсовой работы по дисциплине "Экономическое обоснование управленческих решений". Симферополь: КФ КНЭУ, 1997, - 24 с. 4.   Подсолонко В.А. Стратегия подготовки экономистов и менеджеров ...

0 комментариев


Наверх