8. Расчетная схема валов редуктора.
8.1. I вал – определение реакций в подшипниках.
ДАНО :
Ft | d1=40 (MM) |
Fr | ! OM=58 (MM) |
Fa=8997(H) | !б=175 (MM) |
Fop=862(H) |
Вертик. Плоск.
а. Определяем опорные р-ции
Fr1*
ПРОВЕРКА :Y=0 RAY-Fr1+RBY=0609.3-3275+2665.7=0
Строим эпюру изгибающих моментов
Относительно оси Х :
В характерных сечениях, Н*М: МХ=0
МХ =RAY*
MX0 MX=
2.Горизонтальная плоскость
а) определяем опорные реакции , Н:
RBX=
RAX=2216.7 (H)
Проверка: Х=0 FOП-RAX+Ft1-RBX=0
862-2216.7+2138-783.3=0
Б) Строим эпюру изгиб. моментов относительно
Оси У в характерных сечениях
Му1=0 МУ2=FОП*lоп=862*0.058=50 Н*М
МУ4=0 Му3= -RBX*=-783,3*0,0875=-68,5 ( H*M)
3.Строим эпюру крут. Моментов :
М к=Мz=
4.Определяем суммарные радиальные реакции, Н
R
R2
ARB=
5.Определяем суммарные изгибающие моменты в наиболее нагруженных сечениях, Н*М
М2=My2=50 H*M M3=
Проверочный расчет:
4.10. Определим кпд червячной передачи:
где =11,3,угол трения, определяется в зависимости
от фактической скорости скольжения.
4.11. Проверяем контактные напряжения зубьев колеса н:
где Ft= 2 T2103/d2
К – коэффициент нагрузки. Принимаем в зависимости от окружной скорости колеса:
т. к V2 м /с, то К=1
4.12. Проверяем напряжения изгиба зубьев колеса:
где YF2 – коэффициент формы зуба колеса, определяется по табл. 4.10(стр.74 ) в зависимости от эквивалентного числа зубьев колеса.
ZV2=Z2/COS3
Y
4.13. Составляем табличный ответ.(ТАБ.4.11)
6. Нагрузки валов редуктора.
6.1. Определение сил в червячном зацеплении:
Окружная: Ft
Ft
Радиальная: Fr
Осевая: Fa1=Ft=8997 (H) FA=Ft=2138 (H)
6.2. Определение консольных сил на выходные концы валов:
FM
Муфта на быстроходном валу. 800-1-55-1У2 ГОСТ 20884-81(К25)
С= 1542 FM=C=r=1542*3=4626
6.3. Силовая схема нагружения валов редуктора.
(СМ. приложение № 1)
Направление витков червяка – правое.
Направление вращения двигателя – правое.
2.3.2. Частота вращения и угловая скорость:
Дв n=2880 (об/мин)
Б
Т
2.3.3. Вращающий момент Т, нм:
Дв.
Б 18,2366*2,4935*0,9*0,99=42,7675 (н*м)
Т 42,7675*20*0,85*0,99=719,17 (н*м)
3.1. Червячная передача.
3.1.1. Выбор материала червяка:
По табл. 3.1 определим марку стали для червяка:
Сталь 40Х с твердостью 45 НRCэ, термообработка – улучшение и закалка ТВЧ.
По табл. 3.2 для стали 40Х – твердость 45…50HRCэ
в =900 (Н/мм2), т =750 ( Н/мм2)
3.1.2. Выбор материала червячного колеса:
Марка материала червячного колеса зависит от скорости скольжения:
Vs.
Vs.
В соответствии со скоростью скольжения по табл. 3.5 из группы II принимаем бронзу БрА10Ж4Н4, полученную способом центробежного литья;
в =700 (Н/мм2),т =460 (Н/мм2)
3.1.3. Определим допускаемые контактные напряжения н и изгибные F напряжения:
а) при твердости витков червяка 45HRCэ
н = (табл. 3.6),
С=0,97 – коэффициент, учитывающий износ материала
где N – число циклов нагружения зубьев червячного колеса за весь срок службы – наработка. (см. 3.1. п. 2а)
, где =6,047 =15*105
N2=573*6.047*15*103=51.973*106 циклов
=185 (н/мм2)
Б) коэффициент долговечности при расчете на изгиб:
=0,6447
Для нереверсивных передач:
=(0,08*700+0,25*460)0,6447=
=110,(н/мм2)
Табл. 3.7
Дпред | HRCэ | |||||||
Червяк | Ст.40Х | 125 | У+ТВY | 45…50 | 900 | 750 | ||
Колесо | Ц | 700 | 460 | 497,32 | 110,24 |
4. Расчет червячной передачи.
4.1. Определим главный параметр – межосевое расстояние
аw=
Принимаем аw = 100 мм ( см. табл. 13.15)
4.2. Выбираем число витков червяка z1:
z1 зависит от uчер
uчер.=20, следовательно z1=2
4.3. Определим число зубьев червячного колеса:
z2 = z1* uчер.=2*20=40
Z2=40 |
4.4. Определим модуль зацепления:
m = (1.5…1.7)
Принимаем m = 4
4.5. Из условия жесткости определим коэффициент диаметра червяка:
q (0.212…0.25)z2=(0.212…0.25)*40=8.48…10
Принимаем q = 10
4.6. Определим коэффициент смещения инструмента:
x = 0,714285
4.7. Определим фактическое передаточное число uф и проверим его отклонение u от заданного u:
4.8. Определим фактическое значение межосевого расстояния:
(мм)
aw=100(мм)
4.9. Определим основные геометрические параметры передачи:
а) Основные размеры червяка:
делительный диаметр: d1=g*m=10*4=40(мм)
начальный диаметр: dw1=m*(g+2)=4*(10+2*0)=40(мм)
диаметр вершин витков: da1=d1+2*4=48(мм)
диаметр впадин витков: df1=d1-2,4m=40-2,4*4=30,4(мм)
делительный угол подъема линии витков: =arctg(Z1/g)= arctg(2/10)=11,30
=11018!32!!
длина нарезаемой части червяка:
b1=(10+5,5*!X!+Z1)m+c
Так как х=0,714285, то С=0
в1=(10+5,5*0+2)*4+0=48(мм)
б) основные размеры венца червячного колеса:
делительный диаметр: d2=dw2=m*z2=4*40=160 (мм)
диаметр вершин зубьев: da2=d2+2m*(1+x)=160+2*4(1+0)=168 (мм)
наибольший диаметр колеса: dам2≤da2+6m/(z1+2)=168+6*4/2+2)=174(мм)
диаметр впадин зубьев: df2=d2-2m(1,2-x)=160-2*4(1,2-0)=150,4 (мм)
ширина венца: b2=0,355*aw=0,355*100=35,5 (мм)
b2=36 (мм)
радиусы закруглений зубьев: Ra=0,5d1-m=0,5*40-4=16 (мм)
Rf=0,5d1+1,2m=0,5*40+1,2*4=28,8(мм)
условный угол обхвата червяка венцом колеса 2:
=1030
d!=da1-0,5m=48-0,5*4=46 (мм)
9. Проверочный расчет подшипников.
9.1. Быстроходный вал.
Подшипники установлены в распор. (см. рис. 9.1.б)
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям выбираем формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
9.2. Тихоходный вал.
Подшипники установлены враспор.
А) Определим осевые составляющие радиальных реакций:
Б) Определим осевые нагрузки подшипников:
В) Определим отношения:
Г) По отношениям
Соответствующие формулы для определения RЕ:
Д) Определим динамическую грузоподъемность по большему значению эквивалентной нагрузки:
Подшипник пригоден.
10. Конструктивная компановка привода.
10.1. Конструирование червячного колеса.
Так как диаметр колеса небольшой, то необходимо его изготовить цельнокованным.
10.2.Конструирование червяка.
Червяк выполняется заодно с валом.
А) конец вала.
10.3. Выбор соединений.
Шпонки: на конце I вала – 8 7 30
под колесом червячным – 2012 60
на конце II вала – 16 10 60
Расчет шпонки под колесом.
10.4. Крышки подшипниковых узлов:
Манжета армированная ГОСТ 8752-79
Крышки торцовые
Для защиты подшипников от продуктов износа червячных колес, а также излишнего полива маслом, подшипниковые узлы закроем с внутренней стороны корпуса маслозащитными шайбами.
Толщина шайб 1,2…2 мм., зазор между корпусом и наружным диаметром шайбы 0,2.ю..0,6 мм.
... с.203] назначаем 8 – ю степень точности. Эскизная компоновка и предварительные размеры. После определения размеров основных деталей выполним эскизную компоновку редуктора. Червяк и червячное колесо располагаем симметрично относительно опор и определяем соответствующие длины. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; . По рекомендации [№1 с.380] : 1) принимаем диаметр вала под уплотнения для подшипников ...
... для решения данной задачи является редуктор, который представляет систему зубчатых передач выполненных в герметично закрытом корпусе. Заданием данного курсового проекта является спроектировать червячный редуктор общего назначения, предназначенный для длительной эксплуатации и мелкосерийного производства. 2. Расчётная часть. 2.1. Кинематический расчёт и выбор эл. двигателя При ...
... . Рассчитаем входной и выходной валы. Из предыдущих расчетов редуктора известно: а) моменты передаваемые валами ТI = 17.64 Н×м и ТII = 284.461 Н×м; б) диаметры d1 = 50 мм и d2 = 200 мм; 3.1. Входной вал червячного редуктора. 3.1.1. Выбор материала вала. Назначаем материал вала - сталь 40ХН. Принимаем по таблице 3 [3]: sВ = 820 МПа, sТ = 650 МПа. 3.1.2. ...
... u ≤ 63. Выбор горизонтальной или вертикальной схемы для редуктора всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т.д.). В одноступенчатом червячном редукторе используется червячная передача, состоящая из червяка и червячного колеса. Червячное колесо устанавливается на тихоходном валу, а вал- ...
0 комментариев