3. Исследование строения привода окрасочного робота


В настоящее время гидравлический привод (гидропривод) находит все более широкое применение в лакопокрасочных комплексах благодаря ряду преимуществ, к которым относятся: безопасная работа в пожаро- и взрывоопасных средах; возможность реверсирования и частых пе­реключений скорости движения; возможность дистанционного управления работой машины, регулирование и автоматизация рабочего процесса с помощью относительно простых средств; малый момент инерции элементов механизма, которые враща­ются с большими ускорениями; устойчивая работа при любых скоростных режимах; высокая износоустойчивость элементов привода.


3.1. Общие сведения


Гидропривод - это совокупность устройств, предназначенных для передачи движения и энергии от приводного двигателя к выход­ному звену исполнительного механизма машины с помощью рабо­чей жидкости. Часть гидропривода, заключенную между приводным двигателем и исполнительным механизмом, называют гидравличе­ской передачей.

Гидропривод включает в себя:

- источник жидкости необходимого давления;

- рабочую жидкость;

- аппаратуру управления потоками жидкости;

- соединительные гидролинии;

- исполнительный механизм.

По характеру движения выходного звена исполнительного ме­ханизма различаются гидроприводы поступательного и вращатель­ного движения. В первом случае исполнительный механизм - гид­родвигатель поступательного движения (гидроцилиндр), во втором -гидродвигатель вращательного движения (гидромотор). Иногда в особую группу выделяют гидроприводы поворотного движения, в которых выходное звено совершает возвратно-вращательное движе­ние с углом поворота меньше 360°.

Гидропривод широко используется в современных машинах, благода­ря следующим достоинствам:

1) возможность обеспечения весьма больших усилий на выход­ном звене исполнительного механизма;

2) компактность и небольшая масса по сравнению с механиче­скими приводами;

3) возможность передачи движения и энергии при значительном расстоянии между входным (насос) и выходным (исполнительный механизм) элементами привода с высоким коэффициентом полезного действия

4) возможность бесступенчатого или дискретного регулирова­ния скорости движения выходного звена в широких пределах;

5) простота контроля нагрузки и надежная защищенность от пе­регрузок;

6) простота автоматического управления в функции давления жидкости или пути выходного звена;

7) малая инерционность привода, благодаря чему разгон и тор­можение выходного звена происходят за короткое время.


3.2 Требования к рабочей жидкосткости гидроприводов


Рабочая жидкость должна удовлетворять следующим требова­ниям:

1) безопасность (нетоксичность, пожарная безопасность);

2) совместимость с материалами, из которых изготовлены дета­ли, контактирующие с жидкостью;

3) смазывающая способность - жидкость должна образовывать устойчивые пленки на поверхностях пар трения;

4) вязкость жидкости не должна сильно уменьшаться при по­вышении температуры;

5) жидкость должна обладать антипенными свойствами, то есть не образовывать пены при перемешивании, которое всегда происхо­дит во время движения жидкости в баке при работе насоса;

6) стабильность свойств — способность сохранять свойства на уровне, близком к исходному, в течение длительного срока эксплуа­тации;

7) невысокая стоимость.


3.3 Насосы


Гидравлический насос - это устройство для преобразования ме­ханической энергии, поступающей от двигателя в потенциальную и кинетическую энергию жидкости. Количество жидкости, перекачи­ваемое в единицу времени, называется подачей насоса. По принципу действия различают две основные разновидности насосов: 1) объем­ные; 2) центробежные и вихревые. Объемные насосы характеризу­ются постоянством теоретической подачи QT3/с). Объем жидко­сти, подаваемый таким насосом за один цикл, определяется (если не учитывать ее сжимаемость и утечки) только геометрическими пара­метрами насоса, например, площадью поршня и его ходом, и не за­висит от давления жидкости в линии нагнетания. Поэтому теорети­ческую подачу называют также геометрической. Действительная подача Q объемного насоса несколько ниже теоретической, однако в большинстве случаев не более чем на 10 ... 15 %, т.е. объемный на­сос обладает жесткой характеристикой.

В центробежном насосе жидкость перемещается под действием центробежных сил, действующих на частицы жидкости при их дви­жении по криволинейной траектории. Движению жидкости через межлопаточные каналы центробежного насоса препятствуют силы сопротивления, наибольшая из которых - сила давления жидкости на выходе насоса. Поэтому скорость течения жидкости, а, следова­тельно, и подача центробежного насоса (как теоретическая, так и действительная) при постоянной скорости вращения рабочего ко­леса насоса существенно снижается с ростом давления жидкости вплоть до полного прекращения подачи. Это относится и к вихре­вым насосам.

Из-за очень мягкой характеристики центробежные насосы целе­сообразно использовать в гидросистемах, где давление жидкости изменяется в узких пределах, например, в системах перекачки жид­кости из бака, расположенного на уровне пола, в бак, установленный в верхней части пресса, а также в установках для приготовления во-домасляных эмульсий.



Информация о работе «Изучение построения робототехнических комплексов для нанесения лакокрасочных материалов в мебельной промышленности»
Раздел: Технология
Количество знаков с пробелами: 106659
Количество таблиц: 0
Количество изображений: 51

0 комментариев


Наверх