2.6 Анодная пассивность металлов.
При значительном торможении анодной реакции ионизации металла скорость коррозионного процесса может понизится на несколько порядков. Такое состояние металла принято называть анодной пассивностью. Пассивность можно определить следующим образом: пассивность - состояние повышенной коррозионной устойчивости металла или сплава (в условиях, когда термодинамически он является реакционно способным), Вызванное преимущественным торможением анодного процесса т.е. может произойти так, что в реальных условиях скорость коррозии "активных" элементов оказывается весьма незначительной в следствии наступления пассивного состояния. Например, титан расположенный левее цинка, и хром, расположенный рядом с цинком, в следствии наступления пассивности оказываются более коррозионностойкими в большинстве водных сред, чем цинк. На склонность к пассивному состоянию влияет природа системы металл-раствор. Наибольшую склонность к переходу в пассивное состояние проявляют Ti,Ni,Al,Mg,Fe,Co и др.
Наступление пассивного состояния приводит к значительному изменению формы анодной поляризационной кривой. Кривая может быть разбита на несколько характерных участков:
Вначале скорость анодного растворения металлов возрастает в соответствии с уравнением Тафеля ( =a + blgi)-участок АВ.
Но начиная с В становится возможным процесс образования защитного слоя (фазового или адсорбционного), скорость которого растет при смещении потенциала в положительную сторону. Это приводит к торможению анодного растворения (BD). В точке D, соответствующей потенциалу ( потенциал начала пассивации) скорость образования защитного слоя равна скорости его растворения. Далее идет рост защитного слоя, экранирующего поверхность, скорость анодного растворения резко понижается (DE). В точке Е, соответствующей потенциалу полной пассивации металл оказывается в пассивном состоянии. На участке EF (область пассивного состояния) скорость анодного процесса не зависит от потенциала, а определяется скоростью химического растворения защитной пленки. Ток соответствующий области пассивного состояния, называется током пассивного состояния (i ). Положительнее F возможна ( -потенциал перепассивации) новая ветвь активного растворения с образованием катионов более высокой валентности.
При высоких положительных потенциалах возможен локализованный пробой оксидной пленки - металл начинает растворятся по типу питтинга (PP') называют потенциалом питтингообразования.
Металл запассивированный в данной среде, может сохраняться в пассивном состоянии некоторое время в непассивирующей среде.
3. Депомеризация.
При наличии в растворе газообразного кислорода и не возможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород коррозионные процессы, у которых катодная деполяризация
осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.
Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла:
O + 4e +2HO -> 4OH
3.1 Термодинамические возможности кислородной деполяризации.
Протекание процесса коррозии металла с кислородной деполяризацией согласно уравнения возможно при условии:
V(Me)обр < (VO2)обр
где (VO2)обр - обратимый потенциал кислородного электрода,
равный: (VO2)0обр + (RT/4F)2,303 lg(PO2/OH)
Из последнего уравнения следует, что ( ) зависит от рН среды (а ) и парциального давления кислорода.
Значение обратимых потенциалов кислородного электрода при
различных рН среды и Р
P (атм) | V ,B, при рН среды
| ||
| рН=0 | рН=7 | рН=14 |
0,21 | +1,218 | +0,805 | +0,381 |
1 | +1,229 | +0,815 | +0,400 |
Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой Р=0,21 атм. Следовательно, при определении термодинамической возможности протекания коррозионного процесса с кислородной деполяризацией следует производить учитывая реальное парциальное давление кислорода в воздухе (см. табл.). Т.к. значения (V ) очень положительны, то условия соблюдаются в очень многих случаях. В следующей таблице приведены значения ЭДС и изменения изобарно-изотермических потенциалов коррозионных процессов с кислородной деполяризацией:
Me + n/2HO + n/4O = Me(OH)
Металлы | Твердый продукт (E)обр = (VO2)-(VMe)обр | G | |
| коррозии | (VO2)-(VMe)обр |
|
Mg Mg(OH) +3,104 -71,6 Mn MnO +2,488 -25,6 Zn Zn(OH) +1,636 -37,7 Fe Fe(OH) +1,268 -29,3 Fe Fe(OH) +1,164 -26,3 Cu CuO +0,648 -17,3 Cu Cu(OH) +0,615 -14,2 Ag AgO +0,047 -1,1 | |||
Сопоставляя эти данные с данными по водороду
Р (атм) рН=0 рН=7 рН=14
5*10 +0,186 -0,288 -0,642
1 0,000 -0,414 -0,828
позволяет указать на, то что кислородная деполяризация более термодинамически возможна чем водородная деполяризация.
Изучение восстановления кислорода на неблагородных металлах (а именно они представляют наибольший интерес с точки зрения коррозии) затрудняется тем, что при катодной поляризации электрода металл может иметь потенциал более положительный, чем равновесный и, следовательно, подвергается окислению (ионизации).
При катодной поляризации в определенном интервале потенциалов будут происходить одновременно два процесса восстановление кислорода и окисление металла. Окисление металла прекратится когда потенциал металла будет равен или станет отрицательнее равновесного потенциала металла. Эти обстоятельства затрудняют изучение процессов кислородной деполяризации.
Схема кислородной деполяризации.
Каждый процесс с кислородной деполяризацией включает следующие последовательные стадии:
1) Растворение кислорода воздуха в растворе электролита.
2) Транспортировка растворенного кислорода в растворе электролита (за счет диффузии или перемешивания) к слою Прандтля.
3) Перенос кислорода в части слоя Прандтля П( )в результате движения электролита.
4) Перенос кислорода в диффузионном слое электролита толщиной или в пленке продуктов коррозии металла к катодным участкам поверхности.
5) Ионизация кислорода:
а) в нейтральных и щелочных растворах
O2 + 4e + 2 H2O = 4OH-(водн)
б) в кислых растворах
O2 + 4e + 4 H+(водн) = 2Н2O
6) Диффузионный или конвектный перенос ионов ОН от катодных участков поверхности корродирующего металла в глубь электролита.
В реальных условиях коррозии металла наиболее затрудненными стадиями процесса являются:
а) реакция ионизации кислорода на катоде. Возникающую при этом поляризацию называют перенапряжением кислорода. Говорят, что процесс идет с кинетическим контролем.
б) Диффузия кислорода к катоду, либо перенапряжение диффузии. В этом случае, говорят, что процесс идет с диффузионным контролем.
Возможны случаи когда обе стадии - ионизация кислорода и диффузия кислорода оказывают влияние на процесс. Тогда говорят, о кинетически-диффузионном контроле.
... , в морской воде, в земле, в атмосфере воздуха. Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла: O + 4e +2HO 4OH Коррозия металла с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой равно 0,21 атм. Каждый процесс с ...
... Основным критерием, характеризующим состояние поверхности металла, является электродный потенциал. Обычно возможность применения анодной защиты для конкретного металла или сплава определяют методом снятия анодных поляризационных кривых. При этом получают следующие данные: а) потенциал коррозии металла в исследуемом растворе; б) протяженность области устойчивой пассивности; в) плотность тока в ...
... металла с другими металлами и неметаллами. Для количественных измерений коррозии металлов применяют методы: весовой, объёмный, электрический и др. Наиболее распространенный метод измерения скорости коррозии металлов – весовой, Он основан на определении измерения массы образцов после воздействия агрессивной среды. При этом определяют прибыль или убыль массы образца. В первом случае после действия ...
... кабеля. На катодных установках разрешается работать без снятия напряжения, но обязательно в диэлектрических перчатках. Наружный ящик катодной установки должен быть заземлен. Опорный конспект металл коррозия кабель связь Большинство кабелей связи имеет металлическую оболочку, которая подвергается коррозии, т. е. разрушению под влиянием внешней среды. Различают следующие виды коррозии: ...
0 комментариев