1.2.7 Подсистема автоматики безопасности


Подсистема автоматики безопасности предназначена для эксплуатации в составе оборудования печи скоростного нагрева. Функционально аппаратная часть автоматики безопасности работает автономно от контроллера и управляет электромагнитом, устанавливаемым на предохранительно-запорном клапане на вводе газа к печи.

Схема безопасности реализована на базе контроллера “LOGO!” фирмы Siemens . Контроллер “LOGO! “ представляет собой логическое устройство с 12 дискретными входами (24В),8 релейными выходами и реализует алгоритм управления отсечным газовым клапаном печи и аварийной звуковой и световой сигнализацией.

Включение электромагнита отсечного газового клапана осуществляется кнопкой «Отсечной клапан. Включить». Включение отсечного клапана возможно в том случае, если не выполняются условия отсечки газа.

Отсечка газа осуществляется в следующих случаях:

при понижении давления газа после регулятора давления ниже допустимого предела;

при повышении давления газа после регулятора давления выше допустимого предела;

при понижении давления воздуха в воздухопроводе печи ниже допустимого предела;

при нажатии кнопки «Отсечной клапан. Отключить»;

при нажатии кнопки «Аварийный стоп»;

при сигнале от контроллера «Газ отключить» (данный сигнал выдается контроллером при погасании факелов горелок или при падении давления в печи ниже аварийно допустимого предела).

При срабатывании отсечного клапана выдается звуковой сигнал и загорается лампа, сигнализирующая о причине отсечки газа:

при понижении давления газа после регулятора давления ниже допустимого предела – лампа «Давление газа мало»;

при повышении давления газа после регулятора давления выше допустимого предела – лампа «Давление газа велико»;

при понижении давления воздуха в воздухопроводе печи ниже допустимого предела - лампа «Давление воздуха мало»;

при нажатии кнопки «Отсечной клапан. Отключить», при нажатии кнопки «Аварийный стоп» и при сигнале от контроллера «Газ отключить» - лампа «Отсечка газа».


Анализ существующей системы управления и

постановка задачи проектирования


Существующая в базовом варианте система управления печью ПСН обладает рядом достоинств и недостатков. К достоинствам следует отнести централизованное управление всем участком ДТО от одного контроллера, высокую степень автоматизации процесса нагрева валка и механизации загрузочно-разгрузочных работ.

К недостаткам такой системы можно отнести следующие:

применение электроприводов вращения и ориентирования, имеющих значительные габариты, стоимость и обладающие значительно меньшей надежностью в сравнении с аналогичными гидравлическими приводами;

применение электрических регулирующих механизмов в магистралях подачи газа и воздуха, обеспечивающих регулирование в очень узком диапазоне;

отсутствие синхронизации работы приводов и регуляторов подачи газовоздушной смеси;

отсутствие контроля потребления энергоносителей (природного газа и электроэнергии);

применение в системе управления дорогостоящего импортного оборудования.

Следовательно, проектируемая система должна быть, по возможности избавлена от этих недостатков или, по крайней мере, сводить их к минимуму. Основными задачами проектирования являются:

разработка следящей системы регулирования, контроля и регистрации потребления энергоносителей для снижения себестоимости конечного продукта – валков для прокатных станов;

замена электрических приводов на гидравлические, обладающие меньшими габаритами (не требуется установки редукторов и других передаточных механизмов), стоимостью (реализованы на аппаратуре отечественного производства) и надежностью;

установка регуляторов подачи газовоздушной смеси с пропорциональным электрическим управлением, обеспечивающих регулирование в широком диапазоне с высокой точностью;

обеспечение синхронизации работы приводов и регуляторов подачи для поддержания процесса прогрева валка с оптимальными параметрами;

обеспечение минимальных затрат на установку самой системы путем возможно минимального изменения уже существующей – т.е. без изменения общей структуры участка в целом и печи в частности.


2 РАСЧЕТНО-КОНСТРУКТОРСКАЯ ЧАСТЬ


2.1 Проектирование гидроприводов вращения валка и торцового ориентирования


2.1.1 Гидропривод вращения валка


По заданному значению усилия на опорных роликах привода Ммакс=1300Нм и заданной (максимальной) скорости вращения валка Vмакс=1с-1 выбираем исполнительный орган – гидромотор высокомоментный типа ГРВ-600, имеющий следующие технические характеристики (таблица 2.1).

Таблица 2.1 – Технические характеристики гидродвигателя ГРВ-600

Параметр

Ед. изм.

Значение

Максимальный вращающий момент на валу ротора

Нм

1650

Номинальный вращающий момент на валу ротора

Нм

1500

Рабочее давление

МПа

32

Максимальная частота вращения вала ротора

С-1

4

Рабочий объем

М3/об

52610-6

Номинальный расход рабочей жидкости

М3

0,87

Механический КПД


0,975

Объемный КПД


0,87

Максимально допустимая температура рабочей жидкости

С

120

Рекомендуемые типы рабочей жидкости


И20, И40, АИМ


Определение входных и выходных параметров исполнительного органа (ИО).

Давление на входе ИО (при условии, что давление на выходе равно 0):

14,83(МПа) (2.1),

где МMAX – момент сопротивления на валу мотора, Нм;

VГ – рабочий объем мотора, м3/об;

М – механический КПД мотора.

Расход рабочей жидкости на входе и выходе гидромотора:

3/с) (2.2);

3/с) (2.3),

где MAX – максимальная скорость вращения ротора, с-1;

О – объемный КПД гидромотора.

Потери давления по длине трубопровода и в местных гидравлических сопротивлениях по данным проектного варианта печи (Фирма «Термосталь» г. Санкт-Петербург) составляют порядка pLИС=0.64 МПа.

Выбор гидравлической аппаратуры и определение потерь давления в гидроаппаратах. По полученным значениям давления (2.1) и расхода (2.2) выбираем гидравлическую аппаратуру (гидравлическая принципиальная схема приведена на листе 3 графической части дипломного проекта):

Фильтр напорный типа 1П110.19.00.190;

Гидравлический замок типа ЗГД-10-4;

Регулятор расхода типа ДВП-25;

Дросселирующий распределитель типа РП-20.

Технические характеристики гидроаппаратов приведены в таблицах 2.2 и 2.3.

Таблица 2.2 – Технические характеристики гидроаппаратуры

Параметр

Ед.изм

Фильтр 1П110.19.00.190

Замок ЗГД-10-4


1

2

3

4

Давление паспортное

МПа

32

25

Расход рабочей жидкости паспортный

М3

23,310-4

6,6710-4

Потери давления

МПа

0,2

0,7

Утечки рабочей жидкости

М3

4,110-6

7,310-6


Таблица 2.3 – Технические характеристики гидроаппаратуры с пропорциональным электрическим управлением

Параметр

Ед.изм.

ДВП-25

РП-20

Давление номинальное

МПа

32

32

Расход паспортный

М3

3310-4

5010-4

Потери давления

МПа

0,3

0,7

Потери рабочей жидкости

М3

-

1310-6

Диаметр условного прохода

м

2510-3

2510-3

Площадь сечения условного прохода (средняя)

М2

4,910-4

4,910-4

Ход золотника управления

м

1,610-3

0,810-3

Диаметр управляющего золотника (диаметр проходной щели)

м

1010-3

(0,810-3)

Диаметр регулирующего золотника

м

2510-3

4510-3

Коэффициент обратной связи

А/мм

0,26

0,23

Масса управляющего золотника

кг

1

2,3


Определяем потери давления в гидроаппаратах:

в напорном фильтре:

(Па);

в гидравлическом замке:

(Па);

в регуляторе расхода:

(Па)

Суммарные потери давления в гидроаппаратуре:

(Па).

Выбор регулирующего органа: по рассчитанным значениям давления и расхода выбираем дросселирующий гидравлический распределитель с пропорциональным электрическим управлением типа РП-20, имеющий следующие технические характеристики (таблица 2.3). Потери давления в гидрораспределителе:

(Па).

Определяем параметры насосной установки.

Максимальное давление на выходном патрубке насоса:

(Па);

минимальное:

(Па).

Требуемая подача насоса:

,

где QУ=QФ+QГЗ+QГР=24,410-63/с)– утечки рабочей жидкости в гидроаппаратах (паспортные);

3/с).

М
еханические и скоростные характеристики спроектированного гидропривода рассчитаем с помощью программного продукта SPEED (ДП10.00094.01ПД) – рисунки 2.2 и 2.3.

Р
исунок 2.2 – Механические характеристики привода вращения валка

Рисунок 2.3 – Скоростные характеристики привода вращения валка



Информация о работе «Hазработка системы регулирования, контроля и регистрации потребления энергоносителей печью скоростного нагрева»
Раздел: Цифровые устройства
Количество знаков с пробелами: 80042
Количество таблиц: 8
Количество изображений: 49

0 комментариев


Наверх