3.2.2 Разработка средств сопряжения с датчиками

д
авления


Схема включения датчика давления приведена на рисунке 3.3.


Рисунок 3.3 – Схема включения датчика давления типа САПФИР-22ДИ

Расчет элементов схемы.

Определим величину сопротивлений R1 и R2. Максимальный измеряемый ток IMAX=20 мА, выходное напряжение датчика UВЫХ=36 В, измеряемое напряжение UИЗМ=10 В, тогда:

;

откуда: .

По техническим характеристикам датчика R1=0.1…2.5 кОм, принимаем R1=1.5 кОм, тогда:

= 576.9 (Ом).

Принимаем R2=560 Ом, тогда:

В.


3.2.3 Сопряжение с датчиками тока типа ТКЛМ-0.5-300/5


Трансформатор тока типа ТКЛМ-0.5Т3 на вторичной обмотке выдает ток 5 А частотой 50 Гц. Для подключения АЦП необходимо получить постоянное напряжение, пропорциональное току. Для этого применим двухполупериодное выпрямление измерительного сигнала и амплитудное детектирование (рисунок 3.4).

Р
исунок 3.4 – Принципиальная схема измерительного канала тока

Определим параметры элементов схемы.

Величина сопротивления резистора R1. На вход операционного усилителя должно подаваться напряжение не более 10 В. Тогда напряжение (синусоидальное) на резисторе R1: UR1=20 В, откуда:

R1=UR1/IT1=20/5=4 Ом,

мощность резистора R1:

PR1=I2R1=524=100 Вт.

Принимаем резистор R1 типа ПЭЛ-100-3.9. Тогда: UR1=IR1=19.5 В.

Для определения параметров диодов моста необходимы параметры операционного усилителя (ОУ). Принимаем ОУ типа 140УД7, входной ток которого IВХ.ОУ=0.55 А. По этому значению тока и напряжения UR1 принимаем диоды моста VD1, VD2 типа КД521Б. Стабилитроны VD3, VD4 предназначены для защиты ОУ от перегрузок по входному напряжению. По максимальному входному напряжению ОУ (UВХ.ОУ=10 В) выбираем стабилитроны типа КС210А. Диод VD5 – КД521А (UVD5=10 В, IMAX=0.55A). Транзистор VT1:

напряжение затвор-сток UЗС=UВЫХ.ОУ+UПИТ=10 + 15=25 В;

напряжение затвор-исток UЗИ0;

напряжение сток-исток UСИ=UВЫХ+UПИТ=10 + 15=25 В;

ток стока (по входному току АЦП) IС 10 мА.

По этим данным принимаем VT1 типа КП303В.

Резистор R2 – ограничитель тока стока VT1. Для нормальной работы детектора IСIВЫХ.ОУ=10…15 мА, тогда:

R2= UПИТ/IС= 15/(1510-3)=1 кОм.

Постоянная времени интегрирования:

(с).

На не инвертирующий вход ОУ поступает импульсный сигнал. На инвертирующий – постоянное напряжение с выхода детектора. Усиленный ОУ DA1 разностный сигнал заряжает конденсатор с1, и образующееся на нем напряжение передается через истоковый повторитель (VT1) на выход устройства. Если напряжение на истоке транзистора VT1, а, следовательно, и на инвертирующем входе ОУ DA1 становится больше входного импульсного напряжения, разностный сигнал на выходе последнего исчезает и конденсатор начинает разряжаться через резистор R1. Разрядка продолжается до тех пор, пока напряжение на выходе детектора не станет меньше входного на несколько милливольт, в результате чего на выходе ОУ DA1 вновь появляется усиленный разностный сигнал и конденсатор с1 снова заряжается. Таким образом, создается динамический следящий режим работы, обеспечивающий равенство входного и выходного напряжений детектора с точностью до нескольких милливольт.

Резистор R3 ограничивает ток истока транзистора VT1 при коротком замыкании в нагрузке детектора.


3.2.4 Сопряжение с датчиками напряжения


Трансформатор напряжения типа И-50-0.2-3/0.1 на вторичной обмотке выдает напряжение 100 В. для подключения АЦП необходимо получить постоянное напряжение, пропорциональное входному. Для этого применим еще один понижающий трансформатор напряжения, двухполупериодное выпрямление и пиковое детектирование измерительного сигнала (аналогично каналу тока).

Р
исунок 3.5 – принципиальная схема измерительного канала напряжения

Трансформатор TV2 – типа ТПП207-127/220-50. Используются обмотки I’ – к трансформатору TV1 и III’ –к диодам моста. В остальном схема измерительного канала напряжения полностью повторяет схему канала тока.

С помощью каналов тока и напряжения строим канал измерения мощности – электронный фазометр [ ] – его схема приведена на чертеже ДП10.96502.007Э3 в графической части дипломного проекта.

Устройство позволяет измерять угол сдвига фаз в пределах 180. Сигналы на входе – в пределах 0.05…30 В. с выхода ФНЧ, собранного на микросхеме 140УД6 выходит аналоговый сигнал, пропорциональный углу сдвига фаз между двумя входными сигналами, который потом поступает на вход АЦП. С выхода индикатора знака сдвига фаз, собранного на микросхемах 555ЛА3 и 555ТМ2 в систему управления поступает дискретный сигнал “0” или “1”. Причем “0” обозначает, что угол сдвига фаз положительный, т. е. напряжение опережает ток.

Входной усилитель-ограничитель с коэффициентом усиления малого сигнала порядка КУ=5 усиливает и ограничивает сигнал до уровня срабатывания формирователя прямоугольных импульсов на микросхемах 140УД6. С выхода формирователя на устройство-смеситель поступают импульсы ТТЛ-уровня, получаемые с помощью мостового выпрямителя-ограничителя (диоды КД521А и стабилитрон КС133А). Смеситель, построенный на микросхемах 555ЛП5, смешивает два сигнала (ток и напряжение) в импульсной форме. В результате чего на вход ФНЧ поступает последовательность импульсов различной скважности – получается своеобразная широтно-импульсная модуляция. ФНЧ интегрирует эти импульсы, преобразуя их в непрерывный сигнал, пригодный для аналого-цифрового преобразования с большими периодами квантования.

На вход фазометра следует подавать сигналы непосредственно с датчиков тока и напряжения, а не с преобразователей, обеспечивающих непрерывный несинусоидальный сигнал.

После преобразования трех сигналов: тока, напряжения и угла сдвига фаз микропроцессорная система управления может вычислить мощность, потребляемую двигателем:

.

Это позволит определить потребление электроэнергии двигателями приводов, путем интегрирования значения потребленной мощности по времени, что в результате даст значение работы тока.



Информация о работе «Hазработка системы регулирования, контроля и регистрации потребления энергоносителей печью скоростного нагрева»
Раздел: Цифровые устройства
Количество знаков с пробелами: 80042
Количество таблиц: 8
Количество изображений: 49

0 комментариев


Наверх