Определение суточного расхода сточных вод, поступающих на местные очистные сооружения

Водоотведение поселка Песочное с доочисткой сточных вод
Определение расчетных расходов Расход сточных вод от пассажирского здания Определение начальной глубины заложения уличной канализационной сети Определение расчетных расходов дождевых вод Технико-экономическое сравнение вариантов по выбору системы водоотведения Дождевая сеть Производственная сеть Определение суточного расхода сточных вод, поступающих на местные очистные сооружения Расчет сооружений Разделочные резервуары Определение концентраций загрязнений Расчет сооружений очистной станции Расчет песковых бункеров Расчет вторичных отстойников после аэротенков Расчет центрифуги Расчет барабанных сеток Расчет устройств для сбора и отвода воды при промывке фильтра Расчет местных потерь напора в отводящих сифонах вторичных отстойников Машинное отделение Иловая насосная станция и вентиляторная Заработная плата Амортизация на полное восстановление Введение Микроклимат производственных помещений Техника безопасности Меры безопасности при работах, связанных с реконструкцией главного коллектора Рытье шурфов и колодцев
215069
знаков
60
таблиц
9
изображений

2.3.3. Определение суточного расхода сточных вод, поступающих на местные очистные сооружения.

Для определения суточного расхода сточных вод, поступающих на местные очистные сооружения, и режима их притока в течение суток составлена сводная таблица притока стоков на МОС.

По результатам расчета, полученным в таблице 2.1, определяется производительность местных очистных сооружений: Qмос = 4291.6 м3/сут, Qч.max = 186.71 м3/ч.

2.3.4. Определение концентрации загрязнений в сточных водах.

При проектировании местных очистных сооружений, кроме расчетных расходов сточных вод, необходимо знать концентрацию загрязнений в стоках по лимитирующим показателям. Обычно лимитирующими видами загрязнений в сточных водах железнодорожной станции являются нефтепродукты и взвешенные вещества.

Концентрации нефтепродуктов и взвешенных веществ в сточных водах, поступающих на МОС, в период выпадения расчетного дождя и после него (при опорожнении регулирующих резервуаров), составляет:

по нефтепродуктам å (Kiнп * Qi)

Kсмнп = ¾¾¾¾¾¾,  (2.7)

å Qi

где Kiнп - концентрация нефтепродуктов в производственных и дождевых сточных водах, мг/л;

Qi - суточный расход производственных и дождевых сточных вод, м3/сут (табл. 3.1).

300 * 81 + 20 * 0.4 + 400 * 3.4 + 400 * 80 + 50 * 4126.8

Kсмнп = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ = 61.45 мг/л

 4291.6

по взвешенным веществам

å(Kiвв * Qi)

 Kсмв.в = ¾¾¾¾¾¾, (2.8)

å Qi

где Kiв.в - концентрация взвешенных веществ в производственных и дождевых сточных водах, мг/л;

300 * 81 + 200 * 0.4 + 400 * 3.4 + 400 * 80 + 100 * 4126.8

 Kсмв.в = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ = 109.61 мг/л.

 4291.6

Эффект очистки сточных вод определяется по зависимости:

Ксмнп - Кдопнп 61.45 - 20

Э = ¾¾¾¾¾ * 100% = ¾¾¾¾ * 100 = 67.45%

Ксмнп 61.45

2.3.5. Определение необходимой степени очистки сточных вод.

В данном проекте необходимая степень очистки сточных вод определяется из двух условий.

При сбросе стоков в городскую сеть водоотведения необходимая степень очистки определяется из условия, что концентрация лимитирующего загрязнения (нефтепродуктов) в смеси сточных вод, поступающей на городские очистные сооружения не превышала установленной местными органами Водоканала нормативной величины [4]. С учетом этого концентрация нефтепродуктов в сточных водах после МОС железнодорожной станции определяется по зависимости, мг/л:

Kгоснп * (Qсбр.ж.д + Qгор) - Kгорнп * Qгор

Kостнп = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾, (2.9)

Qсбр.ж.д

где Kостнп - остаточная концентрация нефтепродуктов в очищенных на МОС производственно-дождевых стоках, мг/л;

Kгоснп - допустимая концентрация нефтепродуктов в смеси сточных вод, поступающих на городские очистные сооружения; принята с учетом конкретных условий 10 мг/л;

Qсбр.ж.д - часть расхода очищенных производственно-дождевых сточных вод железнодорожной станции, не используемых в обороте и сбрасываемых в городскую сеть водоотведения; в экстремальных ситуациях сбрасывается весь расход, т.е. Qсбр.ж.д = Qмос, м3/сут;

Qгор - расход сточных вод города, м3/сут;

Kгорнп - концентрация нефтепродуктов в городских сточных водах, мг/л.

 10 * (4320.36 + 54000) - 3 * 54000

Kостнп = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ = 97.49 мг/л

4320.36

Кроме того, необходимая степень очистки сточных вод на МОС может быть определена из условия оптимального варианта использования очищенной воды в оборотной системе водоснабжения железнодорожной станции.

Процент использования очищенной воды в обороте определяется на основании технико-экономических расчетов, учитывающих стоимость водопроводной воды, используемой на производственные нужды, затраты на очистку воды, а также экономический и экологический ущерб от сброса очищенных сточных вод в городскую сеть водоотведения или водоем. Минимальная сумма этих затрат определяет оптимальный процент использования очищенной воды в обороте, т.е.

Z = Пмос + Свод + Yсб ® min,  (2.10)

где Пмос - приведенные затраты на строительство и эксплуатацию МОС, тыс.руб./год;

Свод - стоимость водопроводной воды, потребляемой на производственные нужды, тыс.руб./год;

Yсб - ущерб от сброса сточных вод, очищенных на МОС, в городскую сеть водоотведения (или в водоем), тыс.руб./год.

Приведенные результаты могут быть ориентировочно определены по зависимости, тыс.руб./год:

0.29-0.391

Пмос = 63.8 * Qч.max * Kостнп, (2.11)

где Qч.max - максимальный часовой расход сточных вод, поступающих на МОС (табл. 3.1), м3/ч;

Kостнп - остаточная концентрация нефтепродуктов в очищенной на МОС сточной воде, используемой для различных производственных процессов железнодорожной станции, мг/л; принимается по таблице 3.2.

Для решения этого вопроса составляется балансовая схема использования воды на различные производственные нужды железнодорожной станции (рис. 2.1).

В соответствии с балансовой схемой часть производственных процессов (ПР1) использует водопроводную воду, другая часть процессов (ПР2) может использовать очищенную сточную воду из оборотной системы.

Допустимая остаточная концентрация нефтепродуктов в очищенной воде, используемой для различных производственных процессов, определяется существующими нормативами и принимается по данным [4] или в соответствии с требованиями технологов предприятия. Значения этой величины для некоторых производственных процессов железнодорожной станции представлены в таблице 2.2.

таблица 2.2

Производственные процессы

Qсут.пр, м3/сут

Kостнп, мг/л

Обмывка стойл локомотивного депо 81 50
Наружная обмывка локомотивов 0.4 20
Реостатные испытания тепловозов 3.4 5
Промывка товарных вагонов 80 5
164.8 ¾

В соответствии с рис.2.1 и табл.2.2 возможны четыре варианта устройства оборотной системы водоснабжения.


1-й вариант: оборотная система водоснабжения с МОС, предусмотренными на очистку сточных вод до остаточной концентрации нефтепродуктов 5мг/л. В этом случае на железнодорожной станции производства (ПР1), использующие водопроводную воду, отсутствуют и во всех производственных процессах может быть использована сточная вода, очищенная до концентрации 5мг/л.

Таким образом, все производственные процессы депо можно отнести к производствам (ПР2). Для условий примера суточный расход воды составляет Qпр1 = 0, Qпр2 = 164.8 м3/сут.

2-й вариант: оборотная система водоснабжения с МОС, предусмотренными на очистку сточных вод до остаточной концентрации нефтепродуктов 20 мг/л. В этом случае для производств (ПР1), использующих водопроводную воду (реостатных испытаний тепловозов и промывки товарных вагонов) Qпр1 = 80.4 м3/сут; в остальных производственных процессах может быть использована сточная вода, очищенная до концентрации 20 мг/л, Qпр2 = 84.4 м3/сут.

3-й вариант: оборотная система водоснабжения с МОС, предусмотренными на очистку сточных вод до остаточной концентрации нефтепродуктов 50 мг/л. При этом суточный расход воды составляет Qпр1 = 83.8 м3/сут, Qпр2 = 81 м3/сут.

4-й вариант: прямоточная система производственного водоснабжения, МОС отсутствуют. В этом случае во всех производственных процессах используется водопроводная вода, тогда Qпр1 = 164.8 м3/сут; Qпр2 = 0.

В соответствии с рис.3.1 производительность МОС определяется по формуле, м3/сут:

Qмос = Qпр1 + Qпр2 + Qсут.д.в, (2.12)

где Qсут.д.в - суточный расход зарегулированных дождевых сточных вод, м3/сут (табл.2.1)

Годовой расход водопроводной воды на производственные нужды определяется по формуле, тыс.м3/год:

 365 * Qвод

Wвод = ¾¾¾¾¾, (2.13)

1000

где Qвод - суточная потребность в водопроводной воде, м3/сут.

Годовой сброс производственно-дождевых сточных вод на городские очистные сооружения составляет, тыс.м3/год,

Wсб = Wпр1 + Wд.в. (2.14)

Если пренебречь потерями воды, то Wпр1 = Wвод. При необходимости потери воды на испарение, утечки и пр. могут быть учтены в соответствии с [2].

Годовой объем дождевых сточных вод определяется по формуле, тыс.м3/год:

 Wд.в = 0.01 * Y * Hср.год * F, (2.15)

где Y и F - показатели, приведенные в п.2.1.1;

Hср.год - среднегодовое количество осадков, мм; принимается по заданию.

Годовая стоимость водопроводной воды, используемой на производственные нужды, составляет, тыс.руб/год:

Свод = Eвод * Wвод , (2.16)

где Eвод - стоимость водопроводной воды, руб./м3; устанавливается местными органами Водоканала или другими службами, эксплуатирующими систему водоснабжения, Eвод = 0.5 руб/м3.

Ущерб от сброса сточных вод в городскую систему водоотведения составляет, тыс.руб/год,

Yсб = Eсв * Wсб , (2.17)

где Eсв - стоимость сброса сточных вод в систему водоотведения города; устанавливается службами, эксплуатирующими систему водоотведения и зависит от концентрации загрязнений в сбрасываемых стоках,

Eсв = 0.10 * Kостнп, руб/м3.

Расчеты по четырем возможным вариантам устройства водоснабжения депо сведены в таблицу 2.3, подсчитав для каждого варианта значение Z по формуле (18) и на основании их анализа выбрана оптимальная с экономической точки зрения необходимая степень очистки сточных вод на МОС, а также определен процент их использования в оборотном водоснабжении.

Таблица 2.3

Kостнп,

Qвод,

Годовой расход СВ, тыс.м3

Затраты, тыс.руб/год
мг/л

м3/сут

Wпр1

Wд.в

Wсб

Свод

Yсб

Пмос

Z

1

2

3

4

5

6

7

8

9

5 0 0 563.01 563.01 0 563.01 154.95 717.96
20 80.4 29.35 563.01 578.36 11.68 568.36 72.31 652.35
50 83.8 30.59 563.01 593.6 15.3 593.6 62.97 671.87
без очистки 164.8 60.15 563.01 623.16 30.08 623.16 0 653.24

На основании проведенных расчетов определения необходимой степени очистки сточных вод по двум условиям установлена допустимая концентрация нефтепродуктов в очищенных стоках Kдопнп, мг/л, которая принята наименьшей из двух полученных расчетных значений:

Kдопнп = 20 мг/л.

Далее определен эффект очистки сточных вод на МОС и разработана технологическая схема очистки производственно- дождевых сточных вод.

Эффект очистки сточных вод определяется по зависимости, %,

Kсмнп - Kдопнп

 Э = ¾¾¾¾¾¾ * 100%, (2.18)

Kсмнп

где Kсмнп - концентрация нефтепродуктов в производственно-дождевых сточных водах, поступающих на МОС, мг/л; определяется по формуле (6).

61.45 - 20

Э = ¾¾¾¾¾ * 100% = 67.45 %

61.45

На основании опыта проектирования и эксплуатации очистных сооружений железнодорожных станций при требуемом качестве очистки сточных вод по остаточному содержанию нефтепродуктов Kостнп до 20 мг/л следует применять на заключительном этапе очистки метод тонкослойного отстаивания с предварительной химической обработкой стоков.


Информация о работе «Водоотведение поселка Песочное с доочисткой сточных вод»
Раздел: Экология
Количество знаков с пробелами: 215069
Количество таблиц: 60
Количество изображений: 9

Похожие работы

Скачать
158994
11
0

... территории, а с другой – на качестве грунтовых вод и их воздействии на здоровье людей.   Глава III. ЭКОНОМИЧЕСКАЯ ХАРАКТЕРИСТИКА ВОДОПОЛЬЗОВАНИЯ В КУРСКОЙ ОБЛАСТИ 3.1 Общая характеристика 3.1.1 Основные показатели водопользования Курская область расположена на юго-западе Европейской территории Российской Федерации в пределах Центрально-Черноземного экономического района. Площадь ...

0 комментариев


Наверх