Прием относительных разниц (примен-ся, когдаабсол-ые значения ф-ров недоступны, а доступны данные об их относительном изменении)

112367
знаков
5
таблиц
0
изображений

2.   прием относительных разниц (примен-ся, когдаабсол-ые значения ф-ров недоступны, а доступны данные об их относительном изменении).

(a)  DyDa=y0·Ia-y0=y0·(Ia-1)

(b)  DyDb=y0·Ia·Ib-y0·Ia=y0·Ia·(Ib-1)

(c)  DyDc=y0·Ia·Ib·Ic-y0·Ia·Ib=y0·Ia·Ib·(Ic-1)

Интегральный метод.

Если необходимо избежать жесткого порядка подстановок, то исп-ся интегральный метод, который также позволяет измерить кол-ое влияние факторов на рез-ый пок-ль, но не требует жесткого хар-ра подстановок, то есть изменение рез-ого пок-ля измер-ся на очень малых отрезках времени ( изменения фак-ов) и производится суммирование приращения рез-та, определяемого как частные произведения, умноженные на приращения факторов на бесконечно малых промежутках.(в учебнике Баланова и Шеремета есть таблица подинтегральных определений).

y=a·b - 2-х факторная модель

DyDa=0,5·Da·(b1+b0)

DyDb=0,5·Db·(a1+a0)

y=a·b·c -3-х факторная модель

DyDa=0,5·Da·(b1с01b0)+(1/3)·Da·Db·Dc

DyDb=0,5·Db·(a1c0+c1a0)+(1/3)·Da·Db·Dc

DyDc=0,5·Dc·(b1a0+a1b0)+(1/3)·Da·Db·Dc

 

Логарифмический метод.

 

Согласно этого метода общее изменение рез-ого пок-ля разделяется м/у факторами пропорционально логарифмам их коэфф-ов изм-ия.

z=x·y

lg z=lg x + lg y

lg (z1/z0)= lg (x1/x0) + lg (y1/y0) - умножаем на Dя и делим на lg (z1/z0)

Dz = k· lg (x1/x0)+ k·lg (y1/y0), где k=Dz/ lg (z1/z0)

Пример. Товарная продукция выросла на 441,2, что составило 4,4% прироста. При этом рост численности персонала составил 1,003, а производительности труда 1,041.

lg 1,044=lg 1,003 + lg 1,041

0,0187=0,0013+0,0174

DП=441,2 руб; DПDч=441,2·(0,0013/0,0187)=30,7; DПDпт=441,2·(0,0174/0,0187)=410,5

k=0,0013/0,0187

Разница м/у интегральн-м и лог-им методами в том , что лог-ий метод применим только при мультипликативной связи, интегр-ый применим при мультипликативной связи и при ее разн-сти - инт. связи.

Комбинированная форма связи.

Комбинированная форма связи подразумевает, что взаимосвязь м/у факторами одновременно и аддитивная и мультипликативная.

y=a+b+c·d

y=a·b·c+d

y=(a+b)/(c+d)

Надо четко отдел-ть ф-ры, связанные аддитивно от ф-ров, связ-х мультипликативно. Рассчитав влияние ф-ов по группам, надопосчитать влияние каждого из них на рез-т.

На последнем этапе в действие вступает прием долевого участия.

z=(a+b)/(c+d)

Dz=DzDx+DzDy , где DzDx - это DzDxa и DzDxb ,а DzDy - это DzDyc и DzDyd

DzDa=(DzDx·Da)/Dx

DzDb=(DzDx·Db)/Dx

DzDc=(DzDx·Dc)/Dx

DzDd=(DzDx·Dd)/Dx

Этап обобщения анал-ого исс-я призван объединить все полученные рез-ты. Данный этап включает в себя: выделение наиболее существенных ф-ров по степени влияния на рез-т; объединение возд-ия на рез-т полож-но и отриц-но влияющих факторов; формулировка оценки рез-ов хоз-ого явления.

Приемы: методы сумм, суммы мест, геометрической средней, расстояний.

  Метод сумм закл-ся в том, что алгебраически суммируются абс-ые или относ-ые значения пок-лей, хар-ие данный процесс.У этого метода больше огран-ий, чем возможн-ей. Ограничения:

- суммируются однонаправленные пок-ли (метод геометрической средней базируется на приеме нормирования (за 1- идеал, наш объект - 0,5,1,2,3 - в сравнении) и преодолевает недостаток однонаправленности).

- значимость пок-лей разная (метод суммы мест базир-ся на приеме предварит-ог ранж-ия пок-лей по степени значимости. Каждому пок-лю присваивается ранг в общей с-ме показателей).

Последний метод (расстояний) строится на дисперсионном анализе - счете отклонений от объекта- эталона.

Если в процессе анал-го иссл-ия мы обнаружили, что связь м/у пок-лями вероятностная-стохастическая, необходимо работать с помощью экономико- математических методов. К ним относятся: методы мате-ой статистики (регрессивный, трендовый, корелляционный); метоы матем-ого программирования (лин-ое программирование ; методы исследования операций (методы, позвол-ие разраб-ть действия, операции, теория игр, управление запасами, ТМО, сетевое моделирование); методы экономической кибирнетики ( имитационное моделирование, теория распознавания образов, деловые игры); эвристические методы («Справочник по функционально- стоимостному анализу»/ Майданчик).

1.Понятие спроса ,факторы его опред-щие.

Целями любого п/п явл-ся: получение прибыли, удовлетворение потребностей общества. Основным фак-ом, влияющим на развитие п/п является спрос на его продукцию.

Спрос - тот объем продукции, который потребитель хочет и в состоянии приобрести при определенных условиях по опред-ой цене в течение опр-ого периода времени и на конкретном рынке.На ряду со спросом нас интересует функция спроса. Функция спроса - это зависимость от объема продукции, от фак-ов, оказыв-щих влияние на спрос. Все фак-ра, которые оказывают влияние на спрос надо разделить на 2 группы: цена (как осн-ой ф-ор) и неценовые ф-ры (детерминанты).

Факторы: цена, по которой фирма продает продукцию, цена конкурента. Зависимость м/у спросом и ценой предст законом спроса. Она закл-ся в обратной зависимости м/у ценой продукции и спросом на нее при неизменности всех прочих ф-ов. С ростом цены уменьшается спрос.К нецен-м ф-рам относ-ся:

*      доходы той группы нас-ия, кот-я является потенц-ым покуп-ем нашего товара. Товары, срос на которые зависит от доходов насел-ия, называются тов-ми первой категории (дорогостоящие) Товары низшей категории - изменение спроса на котроые обратно измен-ю дохода насел-я.

*      реклама

*      состояние финансово-кред-ной сис-мы

*      общее число пок-ей, заинтересов-ых в этой продукции на рынке

*      предпочтения, вкусы, мода, национальные особенности

Функция спроса - зависимость м/у объемом продаж и всеми перечисл-ми факторами. При этом в этой формуле знак будет означать направление влияния, а по эфф будет означать степень зависимости изменения спроса.

Q= -k·p + l·D + L·r , L<0

D - дох пок на душу населения

r - % ставки

Виды, состояния спроса:

отрицательный спрос ( проибр продукции, как правило, из-за отсутствия инф-ции); полное отсутствие спроса (по неинф-ти, есть аналоги); нерегулярный спрос (колеблется в течение промежутка времени; нормальный спрос, совпадающий свозм-ми выброса прод-ии на рынок; чрезмерный спрос (спрос больше предложения); нерац-ый спрос - спрос на тов-ры, котор-е треб-ют (табак, алкагольные изделия).

2.Эластичность спроса

Поскольку каждый из ф-ров имеет разную степень воздействия на величину спроса в целях упр-я и рег-ия пр-а нам необходимо оценить степень чувствительности D к изменению ф-ов спроса. Эластичность - общеэкономический пок-ль, его назн-ие - измериьт насколько процентов изменился результативный пок-ль вследствие изм-ия на 1% переменного ф-ра.

e=(Dy/y)·(Dx/x)=(Dy/Dx)·(x/y)

Эластичность измер-ся 2-мя способ-ми. Точечная эластичность. Кот-я измер-ет зав-ть спроса от изменения к-л ф-ра в конкрет-ой точке ф-ии спроса.

Другой метод - дуговая эаст-ть, кот-ая хар-т среднюю зависим-ть спроса от ф-ра на опред-ом отрезке ф-ии спроса.

Пример. Q=6600-5000p+1000A+50D+1000З; Q - спрос на билеты; P - цена билета; А - создание одного пос-ого места; D - доходы на одного потребителя; З - реклама;

р=5, А=7 мест; D=28; З=20; Q=10000 шт.

Точечная эластичность можно посчитать по любому из ф-ров. М/у спросом и рекламой:

Эз=1000·20/10000=2 в точке (20:10000)

Эз=1000·50/40000=1,25 в точке (50:40000)

Дуговая эластичность хар-ет среднюю эластичность на отрезке кривой спроса.

eз=(DQ/(Q1+Q2)/2)/(DЗ/(З12)/2)=(DQ/DЗ)·( (З12)/(Q1+Q2));

eз=1000·(50+20)/(40000+10000)=1,4

Дуговая эластичность применяется в расчетах тогда,когда колебания переменной величины значительны и состав-ют более 10%. Если перем-ая вел-на колеблется незначительно, то работают с точечной эластичностью. Эластичность может быть рассчитана по любому из факторов спроса. Наиболее распространение в практике получила ценовая эластичность, кот-ая колич-но хар-ет степень изменения кол-ва продукции, запрашиваемое рынком, взависим-ти от колебания цен на продукцию при неизменных значениях всех остальных переменных в ф-ции спроса.

В точке р=5:

eр= -5000·5/10000= -2,5

eр= -5000·6/5000= -6 в точке р=6

Исходя из эластичности различают три вида спроса. Первый - эластичный спрос (|eр|>1), при котором изменение цены на продукцию ведет к более высоким темпам изменения количества продукции. Второй - стабильный спрос (|eр |=1), то есть темпы изменения цены и количества равны. Неэластичный спрос (|eр|<1), при котором изменение цены вызывает изменение кол-ва прдукции в темпах меньших, чемсамо изменение цены.

Место графика

Эластичный спрос.

Влияние на доход роста цен ведет к уменьшению дохода и наоборот. При стабильном спросе влияние на доход роста или понижения цен отсутствует. При неэластичном спросе при росте цены доход будет уменьшаться и наоборот.

Спрос абсолютно неэластичен: eр=0 - какую бы цену мы ни назначили будут прод-ся опр-ое кол-во товаров.

Абсолютная эластичность eр=. Можно продать сколько угодно товаров по определенной цене.

 

p Q TR MR эластичность дуговая

100

1 100

¾

¾

90

2

180

80

-6,33

80

3

240

60

-3,40

70

4

280

40

-2,14

60

5

300

20

-1,44

50

6

300

0

-1

40

7

280

-20

-0,69

30

8

240

-40

-0,4

20

9

180

-60

-0,2

10

10

100

-80

-0,14

 

С 1 по5 включит-но - эластичный спрос, а с 7 по 10 неэластичный.

TR=P·Q

MR=TRI=¶TR/¶Q=¶(P·Q)/¶Q=(P¶Q+Q¶P)/¶Q=P+Q·(¶P/¶Q)=P(1+(Q/P) ·(¶P/¶Q))=P·(1+!/ep)

MR=P·(1+!/ep)

P=MR/(1+!/ep)

Перекрестная эластичность.

Цена товара-заменителя может быть важнейшим фактором спроса на данный товар. Взаимозаменяемые товары - это товары м/у которыми существует зависимость (цены одного и объема продаж другого)

eр=(¶Q2/p1)·(p1/Q2)

eр1>0 Þ цена одного товара и спрос на другой изменяются в одном направлении. Прямая хар-ет хорошо взаимозаменяемость товаров.

eр1<0 Þ цена одного товара и спрос на другой изменяются в разных направлениях. Прямая хар-ет взаимодополняемость товаров (комплиментарные товары).

eр1=0 Þ никакого влияния цены одного товара на спрос другого нет, то есть товары неродственны.

Лекция№4 Анализ взаимосвязи затрат, выручки и прибыли.

Предварительный анализ.

Этот метод в зарубежной практике используется дост-но широко: «затраты - объем - прибыль». Назначение этогометода -прогнозный анализ прибыли. Анализ прибыли с использованием этого метода позволяет рассм-ть ф-ры, формирующие с/с и цены, определить их колич-ое влияниена вел-ну прибыли, поэтому этот анализ нашел широкое применение в управлении п/п.

В основе этого метода лежит свойство разли-ых составных частей с/с по-разному реагироватьна изменение объема производства. П/п начинает получать прибыль только тогда, когдавыручка отреализации покрывает понесенные п/п затраты. Анализируя измен-ие постоянных и переменных затрат в зависимости от суммарного объема производства, п/п может гибко и оперативно принимать решения по управлению, испльзованию ставки маржинального дохода, оптимизировать ассортимент выпускаемой продукции.

При этом используется 2 основных подхода к максимизации массы, темпам наращения прибыли: сопоставление выручки с суммарными , а также переменными и постоянными затратами и сопоставление предельной выручки с предельными затратами. Второй метод наиболее эффективен.

Метод анализ «затраты - объем - прибыль» называется анализом безубыточности. При его проведении изучается влияние изменения цен на прдукцию, уровня и структуры издержек иобъема продаж на прогнозируемую прибыль. Анализ безубыточности эффективен для подготовки и оценки различных проектов с точки зрения их возможной прибыльности или доходности.

Методика анализа соотношения «издержки - объем - прибыль»

Место схемы

При анализе безубыточности используются следующие базисные предположения:

·    неизменные цены на продукцию; объем продаж в стоимостном выражении меняется прямо пропорционально количеству проданного;

·    совокупные издержки подраздел-ся на пост-ые и перем-ые;

·    общие перемен-ые издержки меняются прямо пропорц-но объему проданного; то есть переменные издержки остаются на постоянном уровне только в опред-ых пределах;

·    общие постоянные издержки сохраняются неизменными в пределах рассматриваемого объема продаж;

·    ассортимент прдукции ост-ся неизм-ым в пределах рассматриваемого объема продаж;

·    объем продаж равен объему производства, то есть объем запасов остается неизмен-м.

Графический анализ безубыточности.

 Представим взаимосвязь издержек, объема пр-ва и прибыли графически

Место графика

Две наиболее важные линии- линия выручки (общего дохода) и линия совокупных издержек. Точка их пересечения показывает объем пр-ва, при кот-ом прибыль равна нулю, то есть доход= общим издержкам. Эта точка называется точкой критического объема продаж, точка безуб-сти или мертвая точка. Для того, чтобы найти прибыль, необходимо найти разность по вертикали м/у линиями выручки ТС вверх от точки безуб-сти. Зона убытков идет вниз слева от точки безуб-сти. После определения точки безуб-сти имеется возможность оценить возможность получения прибыли на любом отрезке времени в будущем. При построении графика делаются следующие допущения:

·    существуют неизменные цены реал-ии, с одной стороны, и цены на потребляемые производ-ые ресурсы с другой;

·    затраты п/п строго подраздел-ся на постоянные и перемен-ые;
пост выручка пропорц-на объему реал-ии;

·    существует одна точка критического объема произ-ва;

·    ассортимент изделий постоянный;

·    объем производства равен объему реализации

Точку критического объема продаж можно опред-ть и алгебраически:

   Прибыль - разность м/у выручкой и совокупными издержками.

П=р·Q-Спер·Q-Спост, где П - прибыль, р - цена, С - издержки; Q - объем продаж.

В точке критического объема продаж прибыль равна нулю. Исходя из этого:

 П=р·Q-Спер·Q-Спост=0

(р-Спер)·Q-Спост=0

Q=Спост/(р-Спер)

2.   Критический объем продаж может быть определен и по след формуле:

Q=Спост+П/р-Спер - только при условии, что мы хотим определить критический объем продаж этому ч. д. Необх прибыли.

Пример. Компания производит изделие: р=5000, Спер=3500, Спост=150000000. Определить критический объем продаж, необходимый объем продаж при условии, что п/п планирует получить прибыль, П=30000000.

1.   Q=Спост/(р-Спер)=150000/(5-3,5)=100000.При произ-ве 100000 шт изделий прибыль равна нулю.


Информация о работе «Лекции экономанализ»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 112367
Количество таблиц: 5
Количество изображений: 0

0 комментариев


Наверх