4. Определяются усилия и мощности резания по выбранным значениям t,S и V.

5. Проверка возможности осуществления выбранного режима резания на заданном станке по его эксплуатационным данным. Если найденный режим не может быть осуществлен на заданном станке, а выбранная подача удовлетворяет, необходимо уменьшить скорость резания. Уменьшение скорости V осуществляется вводом поправочного коэффициента изменения скорости Kv в зависимости от отношения мощности на шпинделе, допустимой станком, к мощности по нормативам.

6. Корректировка выбранного режима по станку в соответствии с его паспортными данными.

Пример решения задачи

Рассчитать режим резания при предварительной обточке детали типа вал на станке 16К20.

Исходные данные: род и размер заготовки - прокат, сталь 45; sв=550 МПа; D=80 мм; d=68 мм; l=275 мм; условия выполнения операции - заготовка устанавливается в самоцентрирующийся патрон с поджатием центра задней бабки.

Решение

1.


Выполнение эскиза обработки.

2. Выбор режущего инструмента.

Для обтачивания вала из стали 45 принимаем токарный проходной резец прямой правый с пластиной из твердого сплава Т5К10 [2] или [3] j=45°; j1=10°; с=4 мм (толщина пластинки); ВхН=25х25 (сечение державки); Ip=1,5 Н (вылет резца).

3. Назначение режимов резания.

Расчет режимов резания выполним в традиционной последовательности с использованием данных работы [7].

3.1 Глубина резания. При черновой обработке припуск срезаем за один проход , тогда

 мм

3.2 Назначаем подачу. Для державки резца сечением 25х25 мм, диаметра обработки до 100 мм и глубины резания до 8 мм рекомендуется подача S=0,5...0,7 мм/об;

Проверим допустимость рекомендуемой подачи по мощности электродвигателя , прочности державки резца и прочности пластинки твердого сплава.

Для глубины резания t=6 мм, мощности электродвигателя Nд=8 кВт и для резца j1>0° допускается подача S=0,7мм/об. Для стали с пределом прочности sв=550 МПа (55 кг/мм2) поправочный коэффициент Кмs=1,07. Следовательно, подача, допускаемая мощностью электродвигателя (из условий обеспечения работы для твердого сплава со скоростью не ниже 50 м/мин) S=0,7×1,07=0,75 мм/об.

Для резца с державкой сечением 25х25 мм и глубиной резания t=6 мм находим подачу S=3 мм/об. Умножив эту подачу на поправочный коэффициент Кмs=1,07, соответствующий стали с пределом прочности sв=550 МПа (55 кг/мм2), и Кмs=0,58, соответствующий вылету резца l=1,5 H, найдем подачу, допустимую прочностью державки резца: S=3×1,07×0,58=1,86 мм/об.

Для резца с главным углом в плане j=45°, толщиной пластинки твердого сплава с=4 мм и для глубины резания t=6 мм находим подачу S=1,11 мм/об.

С учетом поправочного коэффициента для стали (sв=550 МПа), Кмs=1,07, допускается подача по прочности пластинки твердого сплава

S=1,11×1,07=1,19 мм/об.

Из сопоставления подач S=0,7 мм/об, S=1,86 мм/об и S=1,19 мм/об, видим, что величину подачи лимитирует мощность электродвигателя. Подача, допустимая мощностью электродвигателя, не ограничивает максимальную подачу S=0,7 мм/об. Такая подача имеется на станке (согласно паспортным данным), следовательно, ее и примем для выполнения технологического перехода обработки Æ68 .

3.3. Скорость резания и частота вращения шпинделя. Для глубины резания t=6 мм резца проходного прямого с главным углом в плане j=45° для S=0,7 мм/об соответствует V=100 м/мин, Pz=6630 H, Nэ=10,7 кВт.

Определяем поправочные коэффициенты для измененных условий резца. В данном примере необходимо учесть только поправочный коэффициент в зависимости от предела прочности обработанного материала sв. Для sв=550 МПа находим Kmv =1,18, , .

Следовательно, для заданных условий обработки нормативные значения V, Pz и Nэ составляют: V=100×1,18=118 м/мин; Pz=6630×0,92=6100 Н; Nэ=10,7×1,09=11,6 кВт.

Найденный режим не может быть осуществлен на заданном станке , так как эффективная мощность , потребная на резание Nэ=11,6 кВт, выше мощности на шпинделе, допустимой номинальной мощностью электродвигателя (7,5 кВТ по паспорту станка). Необходимо уменьшить скорость резания. Коэффициент изменения скорости резания зависит от отношения мощности на шпинделе, допускаемой станком, к мощности по нормативам.

В данном примере это отношение будет 7,5/11,6=0,6.

Для этого соотношения коэффициент изменения скорости резания: Kv =0,55 м/мин. Скорость резания, установленная по мощности станка ,

V=188×0,55=65 м/мин

Частота вращения шпинделя

 об/мин

По паспорту станка выбираем n=250 об/мин. Тогда фактическая скорость резания

 м/мин.

Окончательно для перехода обработки Æ80: глубина резания t=6мм, подача S=0,7 мм/об, n=250 об/мин, Vф=62,8 м/мин.

4. Основное время

 мин.

где L - путь резца

L=l+l1=275+6=281 мм

здесь l1 - величина врезания резца (для данного примера). Для глубины резания t=6 мм и главном угле в плане j=45° находим l1=6 мм;

l - длина обработанной поверхности.

Задание на практическое занятие №3.

Определить режимы резания по таблицам нормативов (по заданному варианту) для обработки на токарно-винторезном станке 16К20.

Исходные данные приведены в таблице 3.

Порядок выполнения работы

1. Пользуясь инструкцией и дополнительной литературой, изучить методику определения режима резания. Ознакомиться со справочником [7].

2. Выполнить эскиз обработки.

3. Выбрать режущий инструмент, выполнить эскиз.

4. Назначить глубину резания.

5. Определить подачу.

6. Определить скорость, силу и мощность затрачиваемую на резание.

7. Определить частоту вращения шпинделя и скорректировать по паспорту станка.

8. Определить действительную скорость резания.

9. Определить основное технологическое время. Таблица 3

Заготовка, материал и его свойства Вид обработки и параметр шероховатости D, мм d, мм l, мм
1 2 3 4 5 6
1

Прокат. Сталь 45, sв=600 МПа

Растачивание на проход, Ra=3,2 мкм 97 100H10 120
2

Прокат. Сталь 2Х13, sв=600 МПа

Обтачивание на проход, Ra=3,2 мкм 80 70h10 300
3

Прокат. Сталь ШХ15, sв=700 МПа

Растачивание в упор, Ra=12,5мкм 90 95H12 50
4 Отливка с коркой. Серый чугун СЧ 15, НВ197 Обтачивание в упор, Ra=12,5 мкм 100 94h12 150
5 Прокат. Латунь ЛМцЖ 52-4-1 НВ220 Растачивание на проход, Ra=12,5 мкм 48 54H12 70
6 Отливка. Чугун ВЧ 60-2. НВ240 Растачивание, Ra=3,2 мкм 70 63h10 60
7

Прокат. Сталь 40Х, sв=700 МПа

Обработка в упор, Ra=12,5 мкм 66 70H12 100
8 Обработанная. СЧ 24, НВ207 Обработка в упор, Ra=3,2 мкм 120 114h10 250
9 Поковка. Чугун КЧ33 НВ163 Обработка на проход, Ra=12,5 мкм 110 116H12 150
10

Обработанная.Сталь20Х, sв=550 МПа

Обработка в упор, Ra=1,6 мкм 80 70h7 200
11

Прокат. Сталь 40ХН, sв=700 МПа

Обработка на проход, Ra=3,2 мкм 74 80H10 75
12

Прокат. Сталь 18ХГТ, sв=700 МПа

Обработка на проход, Ra=12,5 мкм 170 155h12 125
13

Обработанная.Сталь65Г, sв=700 МПа

Обработка в упор, Ra=12,5 мкм 62 70H12 80
14 Отливка с коркой. Серый чугун СЧ 21, НВ205 Обработка в упор, Ra=12,5 мкм 125 113h12 275
15 Поковка. Чугун КЧ35 НВ163 Обработка на проход, Ra=3,2 мкм 138 150H10 100
16

Обработанная.Сталь1Х13,sв=500МПа

Обтачивание на проход, Ra=3,2 мкм 90 81h10 175
17

Прокат. Сталь 1Х18Н9Т, sв=550 МПа

Обработка в упор, Ra=12,5 мкм 42 50H12 90
18 Отливка с коркой. Бронза БрАЖН 10-4. НВ170 Обтачивание на проход, Ra=1,6 мкм 105 100h7 85
19 Отливка с коркой. Серый чугун СЧ 40, НВ210 Обработка на проход, Ra=3,2 мкм 60 69H12 45
20

Обработанная.Сталь35, sв=560МПа

Обработка на проход, Ra=1,6 мкм 115 100h7 280
21

Прокат. Сталь 38ХА, sв=680 МПа

Обработка на проход, Ra=1,6 мкм 85 90H7 110
22

Отливка с коркой. Сталь35ХГСЛ, sв=800Мпа

Обтачивание, Ra=12,5 мкм 95 90h12 70
23

Прокат. Сталь 20, sв=420 МПа

Обработка на проход, Ra=1,6 мкм 65 70H7 50
24

Обработанная.Сталь50, sв=900МПа

Обработка в упор, Ra=12,5 мкм 55 51h12 35
25

Обработанная.Сталь50Х, sв=650МПа

Обработка в упор, Ra=3,2 мкм 32 35H10 20
26

Отливка с коркой. Сталь30Л, sв=480МПа

Обработка на проход, Ra=1,6 мкм 100 92h7 195

Продолжение табл. 3

1 2 3 4 5 6
27

Прокат. Сталь 30ХМ, sв=1000 МПа

Обработка на проход, Ra=12,5 мкм 75 80H12 120
28

Прокат. Сталь 30, sв=600 МПа

Обработка в упор, Ra=3,2 мкм 116 98h10 115
29 Отливка с коркой. Чугун ЖЧХ, НВ250 Обработка на проход, Ra=12,5 мкм 95 115H12 180
30

Прокат. Сталь 65Г, sв=700 МПа

Обработка на проход, Ra=12,5 мкм 150 128h12 300

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4

Назначение режима резания при сверлении, зенкеровании и развертывании

Цель работы: изучить методику назначения режимов резания по таблицам нормативов. Ознакомиться и приобрести навыки работы с нормативами.

ОБЩИЕ СВЕДЕНИЯ

Наиболее распространенный метод получения отверстий резанием – сверление.

Движение резания (главное движение) при сверлении – вращательное движение, движение подачи – поступательное. В качестве инструмента при сверлении применяются сверла. Самые распространенные из них – спиральные, предназначены для сверления и рассверливания отверстий , глубина которых не превышает 10 диаметров сверла. Шероховатость поверхности после сверления Ra=12,5¸6,3 мкм, точность по 11-14 квалитету. Градация диаметров спиральных сверел должна соответствовать ГОСТ 885-64. Для получения более точных отверстий (8-9 квалитет) с шероховатостью поверхности Ra=6,3¸3,2 мкм применяют зенкерование. Исполнительные диаметры стандартных зенкеров соответствуют ГОСТ1677-75. Развертывание обеспечивает изготовление отверстий повышенной точности (5-7 квалитет) низкой шероховатости до Ra=0,4 мкм.

Исполнительные размеры диаметров разверток из инструментальных сталей приведены в ГОСТ 11174-65, с пластинками из твердого сплава в ГОСТ 1173-65.

Отличительной особенностью назначения режима резания при сверлении является то, что глубина резания t=D/2, при рассверливании, зенкеровании и развертывании.

 , мм.

При рассверливании отверстий подача, рекомендуемая для сверления, может быть увеличена в 2 раза.

Порядок назначения остальных элементов режима резания аналогичен назначению режимов резания при токарной обработке.

Средние значения припусков на диаметр, снимаемых зенкерами и развертками см. в приложении 4.

Пример решения задачи

На вертикально-сверлильном станке 2Н125 обработать сквозное отверстие диаметром 25Н7 (Ra=1,6 мкм), l=125 мм. Материал заготовки СЧ18, НВ210.

Необходимо: выбрать режущий инструмент, назначить режим резания по таблицам нормативов, определить основное время.

Решение:


Эскиз обработки
Информация о работе «Теория Резания»
Раздел: Технология
Количество знаков с пробелами: 68684
Количество таблиц: 18
Количество изображений: 6

Похожие работы

Скачать
40469
3
3

... Примечание. В стандартных обозначениях координатных плоскостей применяются индексы, которые отвечают системе (рис. 13, 14): „і” - в ІСК; „с” - в ССК; „к” - в КСК. Например, Pvc - основная плоскость ССК, Pvk - основная плоскость КСК. В курсе «Теория резания» и технической литературе все обозначения координатных плоскостей в статической системе координат принято применять без индекса „с”. Например ...

Скачать
20699
4
2

... реальную сущность процесса резания. Анализируя книгу С.А. Воскресенского по резанию древесины, Е.Г. Ивановский писал [8], что применение только одного механико-математического метода сдерживает развитие науки о резании. Резание древесины есть одно из самых сложных физических явлений. Именно так надо подходить к его изучению. Такое понимание метода исследования не предполагает открытия новых ...

Скачать
36495
0
10

... при сохранении требуемого качества поверхности и стойкости инструмента[5]. Глава 2. Технологические методы лезвийной обработки   2.1. Поступательная обработка К поступательным видам обработки относятся строгальные, долбежные и протяжные виды обработки. Строгание и долбление - обработка резанием осуществляемая однолезвийным инструментом с возвратно-поступательным главным движением ...

Скачать
34171
3
32

... ” изучает основы резания металлов и включает в себя изучение геометрии инструментов, виды инструментов, физические основы процессов резания, методы формообразования, расчет параметров режимов резания. 1 Анализ процесса формообразования поверхности.1.1 Кинематическая схема обработки и методы формообразования поверхности Кинематическая схема шлифования зубчатого колеса червячным кругом представлена ...

0 комментариев


Наверх