6. Классификация износостойких покрытий для режущего инструмента.
6.1. Основные положения.
Все элементы Периодической системы подразделяются на группы электронных аналогов, атомы которых имеют аналогичные строения электронных оболочек:
- s-элементы, имеющие полностью заполненные внешние s-оболочки
- d- и f-элементы, имеющие незаполненные d- и f-оболочки
- sp-элементы, имеющие валентные s,p-электроны (неметаллы)
Данной классификация поясняет деление всех тугоплавких соединений, применяемых в качестве покрытий, на три группы:
- металлоподобные тугоплавкие соединения, образуемые d- и f-переходными металлами (бориды, карбиды, нитриды)
- металлоподобные тугоплавкие соединения, образуемые между собой в основном d- и f-переходными металлами, а также вырожденными металлами из sp-групп электронных аналогов
- неметаллические тугоплавкие соединения, образуемые взаимным сочетанием неметаллов (оксиды)
Наиболее широко в качестве износостойких покрытий применяются соединения тугоплавких d-переходных металлов IV-VI Периодической системы элементов с кислородом, углеродом и азотом [5]. Это связано с особенностями их кристаллохимического строения:
- Во-первых, эти металлы имеют недостаток электронов на внутренних s, p и d орбиталях, и это приводит к тому, что они с достаточной легкостью могут приобретать электроны из любого источника, которым может служить междоузельные атомы углерода, азота и кислорода.
- Во-вторых, большинство переходных металлов имеют достаточно большие атомные радиусы и при образовании соединений с атомами C,N и O могут подчинятся правилу Хэгга, согласно которому отношение радиуса атома неметалла к радиусу атома металла меньше критического значения 0.59. Для соединений металлов IV группы (Ti,Zr,Hf) достаточно точно выдерживается правило Хэгга, что приводит к образованию простых структур, в которых превалирует связь металл-металл, а атомы C,H,O можно рассматривать как вставленные в решетку атомов металла.
- В-третьих, большинство переходных металлов имеют широкие области гомогенности, что позволяет в зависимости от содержания кислорода, азота и углерода достаточно сильно изменять физико-механические свойства их карбидов, нитридов и оксидов.
- В-четвертых, переходные металлы и некоторые их соединения, в первую очередь соединения с простой кубической структурой типа NaCl (ZrC,ZrN,TiN,VC,TaC), отличаются очень высокими температурами плавления.
Соединения металлов IV-VI групп с кислородом, углеродом и азотом можно рассматривать и как наиболее устойчивый (в термодинамическом отношении) материал для покрытий, способный противостоять твердо- и жидкофазным диффузионным реакциям, коррозии и окислению при высоких температурах. Ниже будет показано, что свойства соединений тугоплавких металлов с О,N и С при обычных и повышенных температурах сильно зависят от многих факторов: состава (стехиометрии), наличия примесей, микроструктуры и текстуры, пористости и т.д.
6.2. Одноэлементные, однослойные покрытия.
6.2.1. Соединения, используемые в качестве покрытий.
Карбиды. Карбиды обладают рядом противоречивых свойств, что осложняет детальное изучение их физической природы. В частности, строение монокарбидов с кубической решеткой соответствует структуре типа NaCl , вместе с тем электропроводность карбидов сравнима с электропроводностью металлов. Высокая твердость карбидов проявляется за счет ковалентной связи атома углерода с атомом метала.
Наибольшая склонность к образованию энергетически стабильных конфигураций sp3 проявляются у карбидов металлов IV группы (Ti, Zr, Hf ). Это обусловлено большей донорской способностью этих металлов (особенно Ti) при относительно высоком содержании углерода в карбиде (до 20%). Стабильные конфигурации карбидов атомов металлов IV группы объясняется уменьшением общего числа нелокализованных электронов sp-переходов, смещения равновесия вправо и уменьшения общего числа нелокализованных электронов: sp2 + p « sp3. Поэтому карбиды обладают повышенной жесткостью кристаллической решетки, определяющей их высокую твердость, теплостойкость и хрупкость [5].
При переходе к карбидам V группы донорская способность металлов этой группы снижается, что приводит к снижению статистического веса устойчивости sp3-конфигурации карбидов и соответственно уменьшает соответственно твердость этих карбидов. Область их гомогенности сужается, в составе наряду с карбидами МС образуются низшие карбиды М2С с гексагональной структурой. Так например, твердость TiC равна 31.7 ГПа, а твердость TaC – 17.4 ГПа, Nb2C – 21 Гпа [5].
У карбидов тугоплавких металлов VI группы (Cr, Mo,W) содержание углерода падает до 6%, снижается число обобществленных электронов, поэтому статический вес атомов наиболее стабильной электронной конфигурации sp3 оказывается очень низким, а свойства карбидов определяются главным образом свойствами d5-конфигурации. Связи d5 более гибкие, чем sp3, допускают упругий прогиб решетки, более свободное движение в ней дислокаций. Поэтому карбиды металлов VI группы имеют меньшую твердость и хрупкость (CrC, MoC, WC), чем твердость и хрупкость карбидов IV группы (TiC, ZrC, HfC). Так твердость CrC равна 29.5 ГПа, а твердость ZrC – 29.5 ГПа [5] . Карбиды тугоплавких металлов V группы занимают промежуточное положение.
У карбидов VI группы имеются узкие области гомогенности. Образование карбидов таких металлов связано с сильными искажениями кристаллической решетки металла (Cr) либо с нарушением порядка упаковки (Mo, W). В следствии этого, у карбидов VI могут возникать и прямые связи C-C (MoC, CrC) [5].
Нитриды. По своим свойствам и строению нитриды весьма похожи на карбиды, однако, между ними существуют определенные различия. Главное различие состоит в сильном снижении связи металл – неметалл из-за уменьшения ковалентности азота (трехвалентный) по сравнению с валентностью углерода (четырехвалентный).
Атом азота в нитридах, имеющий в изолированном состоянии конфигурацию валентных электронов s2p6 , может быть как донором, так и акцептором электронов. Акцепторная способность азота преимущественно проявляется при образовании нитридов металла IV-VI групп, у которых преобладает ковалентно-металлическая ионная связь. Донорские способности тугоплавких металлов IV группы (особенно Ti) в результате присоединения трех атомов азота приводят к образованию энергетически очень устойчивых конфигураций s2p6: s2p3 + 3p « s2p6 [5].
Вследствие резкого снижения донорской и роста акцепторной способности металлов VI группы (Cr, Mo, W) для этой группы может проявляться и донорская способность азота (s2p3 ® sp4 ® sp3 + p ) с образованием избыточных (не участвующих в химической связи) электронов, которые снижают температуру плавления этих нитридов.
Хотя особенность конфигурационного строения нитридов переходных металлов (s2p6) свидетельствует о их высокой коррозионной стойкости (снижение склонности к твердо- и жидкофазным диффузионным реакциям), необходимо отметить меньшую термодинамическую устойчивость нитридов, по сравнению с карбидами. Практически это означает, что нитриды имеют более низкую по сравнению с карбидами сопротивляемость к высокотемпературному окислению, коррозии. Причем, при переходе нитридов металлов IV группы (TiN, ZrN, HfN) к нитридам металлов V (VN, NbN, TaN) и особенно VI группы (CrN, MoN, WN) сопротивляемость к высокотемпературному окислению снижается. Вместе с тем нитриды имеют и свои преимущества. Они более пластичны и менее хрупки, чем карбиды. Так например, предел прочности при изгибе TiN равен 240 МПа, а TiC – 15 МПа [5].
Оксиды. Оксиды обладают твердостью, сравнимой с твердостью нитридов. Так например, твердость TiN равна 20.5 ГПа, а твердость Al2O3 – 19.9 ГПа. Между тем, по коррозийным свойствам оксиды превосходят нитриды. Хрупкость оксидов сравнима с хрупкостью карбидов.
... даже по сравнению с ускорителем "Пуск-КуАИ" при существенном росте степени ионизации потока и кинетической энергии ионов. Рисунок 1.3 - Схема плазменного генератора с магнитной ловушкой электронов "Пуск-Мэл": 1 - катод; 2 - профилированный анод; 3.1 и 3.2 - соленоиды; 4 - фланец крепления генератора к вакуумной камере; 5 - электрод поджига дуги; 7 - канал подачи реакционных газов. Пунктиром ...
... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...
... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...
... ремонт оборудования. Защита от шума Борьба с шумом посредством уменьшения его в источнике является наиболее рациональной. Уменьшение механического шума может быть достигнуто путем совершенствования технологических процессов и оборудования. Расчет допустимого уровня шума Расчетная формула для определения уровня шума, если источник шума находится в помещении, будет иметь вид: , (4.1) где В ...
0 комментариев