3.2. Плотность электрического эфира
Линейное изменение пространственного масштаба в зависимости от электрического заряда приводит к нелинейному изменению плотности любого тела, области пространства, единичного объема радиуса dl и всего электрического пространственно-временного континуума:
, | (21) |
Связь между масштабом пространственно-временного континуума и величиной электрического заряда замкнутого объема однозначно определена, поэтому плотность электрического эфира можно выразить через одну из трех физических величин: пространственного масштаба, временного интервала или электрического заряда.
. | (22) |
Временной интервал тесно связан с пространственным масштабом, согласно (14). Это позволяет переписать (22) в виде:
. | (23) |
При увеличении электрической массы dq во внутреннем объеме плотность замкнутого пространства-времени уменьшается по закону:
. | (24) |
В реальном замкнутом пространстве-времени равномерное распределение эфирообразующих зарядов реализуется только в сингулярном состоянии. Плотность замкнутого пространства-времени может быть такой огромной, что эфирообразующие заряды составляют плотную упаковку. Плотно прижатые друг к другу частицы вещества равномерно заполняют весь замкнутый объем почти без свободного пространства. В этом случае пространственно-временной континуум имеет максимально равномерное распределение масштаба. На мировой поверхности такое замкнутое пространство-время занимает точку минимальной площади. В других случаях в масштабе одного заряда, заряженного тела или группы тел различной массы и протяженности, гибкий континуум сам искажается, изменяет свою плотность, поддерживая потенциал на постоянном уровне. С расширением замкнутого объема электрические массы вещества расходятся относительно друг друга, образуется свободное пространство. Становится возможным взаимное перемещение масс, перераспределение их плотности.
4. Единая теория поля
4.1. Электромагнитные колебания
В пространстве-времени, образованном гравитационными массами одного знака, электрическое поле равно нулю, вещество электрически нейтрально, так как электрические заряды в каждом теле и пространстве-времени в целом компенсированы. В пространстве без электрического поля отсутствует и магнитное поле, не имеющее собственных источников-монополей. В свободном от электрических зарядов четырехмерном пространстве-времени гравитационного потенциала нет и излучения, так как нет источников, вызывающих электромагнитные колебания. Однако возможны физические процессы, при которых происходит разделение нейтральных атомов на положительные и отрицательные электрические частицы, заряжающие тела или области пространства. При перемещении электрических зарядов в пространстве-времени гравитационного потенциала, возникает магнитное поле.
С появлением положительных и отрицательных электрических зарядов, пространство-время перестает быть только гравитационным. Ускоренное движение электрических зарядов в гравитационном континууме приводит к излучению части их энергии в виде электромагнитных волн. Если не рассматривать искривленную электрическими зарядами область генерации излучения, то можно сказать, что в свободном гравитационном эфире распространяются исключительно электромагнитные волны, описываемые уравнениями Максвелла:
| (25) |
где rot E(H), div E(H) – преобразования ротора и дивергенции напряженности векторного поля электрического и магнитного полей E(H) в пространственных координатах гравитационного континуума. и – магнитная и электрическая постоянные гравитационного пространства-времени. Для гравитационного пространства-времени известно:
. | (26) |
Величина магнитной и электрической констант жестко связана с гравитационным потенциалом одноименного эфира. Состояние гравитационного эфира и его изменение, определяющиеся соотношением (10), можно выразить через константы трех полей:
(27) |
В гравитационном антипространстве-времени также возможно распространение электромагнитных волн. Электромагнитные колебания в замкнутом антипространстве-времени имеют закон подобный (25) с той лишь разницей, что относительно положительного пространства-времени знак пространственной координаты необходимо изменить с плюса на минус. Уравнения Максвелла примут вид:
(28) |
где и магнитная и электрическая постоянные гравитационного антипространства-времени.
Интенсивность взаимного преобразования электрической и магнитной энергии зависит от величины потенциала гравитационного эфира , в котором распространяются колебания. Волновое уравнение электромагнитных колебаний как в гравитационном пространстве, так и в гравитационном антипространстве-времени имеет вид:
(29) |
где – преобразование Лапласа в пространственных координатах гравитационного континуума.
Увеличение массы во внутреннем объеме уменьшает плотность эфира, увеличивая свободное пространство, где распространяются электромагнитные волны. Длина электромагнитных волн изменяется синхронно с изменением пространственного масштаба. Энергия электромагнитных колебаний WEM уменьшается обратно пропорционально увеличению пространственного масштаба dl расширяющегося эфира по закону Планка:
, | (30) |
где h – постоянная Планка.
Свет является лучшим индикатором искривления пространства-времени в какой-либо области или изменения пространственно-временного континуума в целом. Изменение энергии излучения за время распространения его во внутреннем пространстве означает, что через замкнутую поверхность существует поток гравитационно заряженного вещества. Смещение в фиолетовую область спектра говорит о том, что пространственно-временной континуум сокращается (суммарный гравитационный заряд во внутреннем объеме уменьшается), красное смещение частоты свидетельствует о расширении всего замкнутого пространства-времени (гравитационные массы проникают во внутренний объем). Смещение частоты при расширении эфира не вызвано эффектом Доплера, не зависит от скорости источника. Все излучение приобретает красное смещение частоты, обусловленное временем распространения колебаний в расширяющемся континууме, расстоянием до наблюдателя.
... представляют собой проявление одного и того же фундаментального принципа. Эйнштейн опередил свое время. В то время, когда он жил, еще не было известно сильное и слабое взаимодействие, поэтому он так и не смог выстроить Единую Теорию Поля. Больше того, его поиски в то время были мало понятны большинству физиков - почти все из них были озабочены разработкой новой дисциплины - квантовой механикой. ...
... . Более того, до сих пор ещё не доказана самосогласованность процедуры устранения бесконечностей в теории Гейзенберга. Вместе с тем количественные результаты, полученные в этой теории, кажутся обнадёживающими и общая программа нелинейной Единой теории поля продолжает считаться перспективной. Таким образом, Единая теория поля ещё не построена. Однако неразрывная связь между всеми частицами, ...
... слабого взаимодействия являются вионы — частицы с массой, примерно в 100 раз большей массы протонов и нейтронов.(9) К настоящему моменту единая теория описания взаимодействий ещё не разработана до конца, но большинство учёных склоняются к образованию Вселенной в результате Большого взрыва: в нулевой момент времени Вселенная возникла из сингулярности, то есть из точки с нулевым объемом и ...
... . Проблема получения максимального гравитационного поля связана с малой емкостью развернутых Т-образных или плоскоцилиндрических конденсаторов. 9. Наглядно демонстрирует закономерности электромагнитогравитационного взаимодействия электромагнитогравитационный конвертор, основанный на эффекте Серла. Подробное описание эксперимента рассмотрено статье Владимира Рощина и Сергея Година. На первом ...
0 комментариев