Защитные меры в электроустановках

Теория безопасности жизнедеятельности
Изменение в крови при трудовом процессе Взаимодействие организма человека с окружающей средой Цвета и знаки безопасности Санитарно-технические требования к производственным помещениям Классификация естественного освещения Источники искусственного освещения Классификация искусственного освещения Виды очистки воздуха Виды обезвреживания выбросов Измерение уровня шума Опасность ультразвука для человека Меры защиты от вибрации Лазерное излучение Виды радиоактивного облучения Виды воздействия электрического тока на человека Факторы, влияющие на исход воздействия электрического тока на человека Первая помощь при поражении электрическим током Документы, регулирующие правовые вопросы охраны окружающей среды и безопасности труда ССБТ. Подразделение стандартов Дисциплинарная ответственность Руководство и ответственность по охране труда на предприятии Обучение работающих безопасности труда Обучение и проверка знаний руководителей и специалистов Регистрация и учет несчастных случаев Противопожарные нормы, ответственность Классификация производств по пожароопасности Устройство защит от заноса высоких потенциалов, электростатической и электромагнитной индукции Тушение пожара в электроустановках Определение терминов: “электротехническая земля”, “поле растекания” Защитные меры в электроустановках Ограждения применяются сплошные или сетчатые Применение разделительных трансформаторов Классификация электрозащитных средств Технические мероприятия Переносные заземления - закоротки. Порядок их наложения Аккумуляторные установки Устройства автоматического контроля сигнализации и дистанционного управления Меры безопасности при эксплуатации вычислительной техники Опасные факторы пожара Характер воздействия ударной волны на людей и животных Проникающая радиация Радиоактивное заражение Бактериологические поражения Быстровозводимые убежища, щели Действия по сигналам оповещения ГО
297514
знаков
1
таблица
0
изображений

199. Защитные меры в электроустановках.

Согласно ГОСТ 21. 1. 019-79* элетробезопасность электроустановок обеспечивается:

конструкцией электроустановок;

техническими способами и средствами защиты;

организационными и техническими мероприятиями.

Все меры обеспечения электробезопасности сводятся к трем путям:

недопущение прикосновения и приближения на опасное расстояние к токоведущим частям, находящимся под напряжением;

снижение напряжения прикосновения;

уменьшение продолжительности воздействия электрического тока на пострадавшего.

К техническим способам относятся следующие, предусмотренные ПУЭ:

применение надлежащей изоляции и контроль за ее состоянием;

обеспечение недоступности токоведущих частей;

автоматическое отключение электроустановок в аварийных режимах - защитное отключение;

заземление или зануление корпусов электрооборудования;

выравнивание потенциалов;

применение разделительных трансформаторов;

защита от опасности при переходе напряжения с высокой стороны на низкую;

компенсация емкостной составляющей тока замыкания на землю;

применение низких напряжений.

200. Применение надлежащей изоляции. Термин "участок сети".

 Для предупреждения электропоражений применяется рабочая изоляция токоведущих частей, кроме того применяется двойная изоляция - это изоляция металлических частей электрооборудования нормально не находящихся под напряжением. Этот метод защиты имеет недостаток - при пробое на корпусе из-за повреждения рабочей изоляции возможна работа с таким оборудованием, а при повреждении второго слоя изоляции открывается доступ к металлическим частям (корпусу), находящимся под напряжением.

 Таким образом надежность работы электроустановок в большой степени зависит от состояния изоляции токоведущих частей.

 Повреждение изоляции является основной причиной многих несчастных случаев. Надежность изоляции достигается:

 1) правильным выбором ее материала и геометрии (толщина, форма).

 2) правильными условиями эксплуатации.

 3) надежной профилактикой в процессе работы. Изоляция исключает возможность прохождения тока через тело человека при прикосновении к токоведущим частям или ограничивает этот ток до безопасных значений для человека (до 100 млА).

 В последнее время наблюдается широкое внедрение новых видов изоляционных материалов (пластмасс и пр. ) заменяющих каучуковую, хлопчатобумажную и т. п. виды изоляции.

 Для поддержания высокого уровня надежности изоляции необходимо проводить ее до испытания повышенным напряжением и контроль изоляции.

 Испытания проводятся при приеме-сдаче электроустановок и периодически во время их эксплуатации.

 Объем испытаний изоляции регламентируется ПУЭ, ПТЭ и ПТБ. При испытании повышенным напряжением дефекты изоляции обнаруживаются в следствии пробоя и прожигания изоляции.

 Под контролем изоляции понимается измерение ее активного сопротивления ч целью обнаружения ее дефектов и предупреждения коротких замыканий на землю. Измерения проводятся при снятом рабочем напряжении. Измерения проводятся на каждом участке сети, при этом измеряется величина сопротивления изоляции каждой фазы относительно земли и между каждой парой фаз.

 Под участком сети понимается сеть между двумя последовательно установленными предохранителями, аппаратами защиты и т. п. или за последним предохранителем.

 Допустимая величина сопротивления изоляции устанавливается ПУЭ и ПТЭ. Сопротивление изоляции участка сети в сетях напряжением до 1000 В должно быть не менее 0, 5 мОм на фазу. Сопротивление изоляции для различных электроаппаратов устанавливается различным от 1 до 25 мОм.

 Величина сопротивления изоляции некоторых электроаппаратов (напр. силовых трансформаторов) вообще не нормируется.

 Однако путем сравнения величины сопротивления изоляции аппарата измененной при пуско-сдаточных испытаниях и в данный момент можно судить о надежности изоляции. Изоляция считается недостаточной , если установлено снижение сопротивления изоляции по отношения к первоначальным значениям - на 30 и более процентов.

201. Приборы и схемы для измерения и непрерывного контроля изоляции.

 Измерение производится мегаомметром, который состоит из генератора переменного тока с ручным приводом, логометром, добавочных сопротивлений и выпрямительных диодов. Показания логометра не зависят от скорости вращения рукоятки генератора. Измерительное напряжение должно быть не меньше рабочего и несколько больше его. Чрезмерно высокое напряжение может повредить изоляцию. Поэтому в ПТЭ регламентируется напряжение мегаомметра в зависимости от номинального напряжение установки. Выпускаются мегаомметры М4 100/1-5 на напряжение 100, 250, 500, 1000 и 2500 В. Измерение величины сопротивления изоляции по участкам сети позволяет установить участки сети с дефектной изоляцией и устранить дефекты.

 Ток замыкания на землю определяется величиной сопротивления изоляции всей сети относительно земли, которую можно определить измерением под рабочим напряжением с подключенными потребителями. Такой замер возможен только в сетях с изолированной нейтралью. При этом прибор покажет сопротивление изоляции всей сети независимо от того, к какой фазе он подключен.

 Измерения можно проводить мегаомметром с малым (20-30 в) измерительным напряжением, т. к. оно суммируется с рабочим напряжением.

 Можно также производить измерения обыкновенным омметром, которому последовательно подключается для ограничения переменного тока проходящего через прибор.

 При периодическом контроле состояния изоляции не исключаются аварийные повреждения. Надежность электроснабжения повышается при непрерывном (постоянном) контроле изоляции, т. е. измерении сопротивления изоляции под рабочим напряжением в течении всего времени работы электроустановки без автоматического отключения. Отсчет величины сопротивления изоляции производится по шкале прибора. При снижении сопротивления изоляции до предельно допустимого значения или ниже прибор подает звуковой или световой сигнал (или оба сигнала).

 Схемы контроля изоляции можно разделить на:

 1) схемы, работающие на токах нулевой последовательности; при этом токи нулевой последовательности, возникающие в неравных сопротивлениях отдельных фаз относительно земли, выделяются при помощи ассиметров А или при помощи специальных трансформаторов тока нулевой последовательности.

 2) схемы, работающие на выпрямленных токах контролирующей сети, например, вентильные схемы (три вентиля подключены к фазам сети)

 3) схемы работающие на постоянном (выпрямленном) токе постороннего источника.

 4) схемы, работающие на токах постороннего источника с частотой, отличной от промышленной.

 5) комбинированные схемы.

 Кроме того с целью повышения электробезопасности установок применяются схемы и приборы контроля и защиты от замыкания на землю, действующие на сигнал.

 Такая защита реагирует на: а) напряжение фаз относительно земли, например: схема трех вольтметров; б) напряжение нулевой последовательности, например: в сетях с заземленной нейтралью, при этом датчиком служит трансформатор тока нулевой последовательности.

202. Обеспечение недоступности токоведущих частей.

 Прикосновение к токоведущим частям всегда опасно, а при напряжении выше 1000 В опасно приближение к токоведущим частям. Изоляция проводов достаточно защищает при напряжениях до 1000 В, при больших напряжениях опасно прикосновение и к изолированному проводу, т. к. повреждение изоляции бывает незаметно, если он подвешен на изоляторах.

 Чтобы исключить прикосновение или приближение к токоведущим частям обеспечивается недоступность их посредством:

 1) ограждения,

 2) блокировок,

 3) расположение токоведущих частей на недоступном месте или на недоступной высоте.


Информация о работе «Теория безопасности жизнедеятельности»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 297514
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
54443
0
0

... жизни и здоровья детей в условиях школы-интерната зависит от профессионально ориентированной деятельности персонала учреждения. Глава 2 Работа воспитателей по основам БДЖ с детьми в ГУ Социальный приют «Ховрино»   2.1 Характеристика социального приюта «Ховрино»   Социальный приют «Ховрино» для детей и подростков САО г. Москвы расположен по адресу: г. Москва, ул. Зеленоградская, 35Б. ...

Скачать
506603
63
3

... или технологических процессов; – при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов. Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему; – контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере; – идентификация ...

Скачать
59617
0
0

... преобразования и определяет все основные особенности личности детей подросткового возраста, следовательно, и специфику работы с ними. Глава 2. Теоретические аспекты игровой деятельности как средства развития творческих способностей школьника 2.1 Развитие творческих способностей школьника Творчество понимается как механизм продуктивного развития. Для творчества решающее значение имеют не ...

Скачать
220123
0
0

... и подведомственных объектов производственного и социального назначения от чрезвычайных ситуаций; – планировать и проводить мероприятия по повышению устойчивости функционирования организаций и обеспечению жизнедеятельности работников организаций в чрезвычайных ситуациях; – обеспечивать создание, подготовку и поддержание в готовности к применению сил и средств по предупреждению и ликвидации ...

0 комментариев


Наверх