Высшая математика

24162
знака
0
таблиц
6
изображений
Основные теоремы и определения

Определение. Сумма членов бесконечной числовой последовательности Высшая математика называется числовым рядом.

Высшая математика

При этом числа Высшая математика будем называть членами ряда, а un – общим членом ряда.

Определение. Суммы Высшая математика, n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

Определение. Ряд Высшая математика называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Высшая математика

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда Высшая математика и Высшая математика, где С – постоянное число.

Теорема. Если ряд Высшая математикасходится и его сумма равна S, то ряд Высшая математикатоже сходится, и его сумма равна СS. (C ¹ 0)

3) Рассмотрим два ряда Высшая математикаи Высшая математика. Суммой или разностью этих рядов будет называться ряд Высшая математика, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды Высшая математикаи Высшая математикасходятся и их суммы равны соответственно S и s, то ряд Высшая математика тоже сходится и его сумма равна S + s.

Высшая математика

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность Высшая математикабыла сходящейся, необходимо и достаточно, чтобы для любого Высшая математика существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

Высшая математика.

1.3 Определение. Ряд Высшая математиканазывается равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда Высшая математиканеобходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

Высшая математика

выполнялось бы для всех х на отрезке [a,b].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд Высшая математикасходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

Высшая математика

т.е. имеет место неравенство:

Высшая математика.

Еще говорят, что в этом случае функциональный ряд Высшая математика мажорируется числовым рядом Высшая математика.

ряд Высшая математика называется положительным, если Un≥0, для всех n ? N

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … = Высшая математика и несобственный интеграл Высшая математика одинаковы в смысле сходимости.

Пример. Ряд Высшая математика сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл Высшая математика сходится при a>1 и расходится a£1. Ряд Высшая математика называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и Высшая математика то интегралы Высшая математика и Высшая математика ведут себя одинаково в смысле сходимости.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

Высшая математика.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд Высшая математика

Применяем признак Даламбера:

Высшая математика.

Получаем, что этот ряд сходится при Высшая математикаи расходится при Высшая математика.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1: Высшая математика ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1: Высшая математика ряд расходится (гармонический ряд).


Информация о работе «Высшая математика»
Раздел: Математика
Количество знаков с пробелами: 24162
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
4521
0
0

Ось абсцисс пустим вдоль оси первого конуса, ось ординат - вдоль оси второго конуса, ось аппликат - параллельно оси цилиндра, причем так, чтобы система координат была правой. Расстояние d от вершин конусов до начала координат находим с помощью Теоремы Пифагора:2 + l = + 2 = 7.7 (см) таким образом ось цилиндра описывается следующим уравнением: Вершина первого конуса имеет следующие координаты - ...

Скачать
13764
1
0

урецкий, персидский, татарский и французский языки, а также мусульманское и международное право. Целью данной работы является освещение предмета высшей математики в профессиональной деятельности военного юриста. Работа включает не только теоретические аспекты применения методов высшей математики в военной юриспруденции, но и примеры практического использования методик. 1. Характеристика ...

Скачать
149274
13
5

... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...

Скачать
18574
2
0

бнику, решения задач необходимо ответить на вопросы для самопроверки, помещенные в конце темы. В соответствии с действующим учебным планом студенты-заочники изучают курс высшей математики в течение 1 и 2 семестра и выполняют в каждом семестре по две контрольные работы. Первая и вторая контрольные работы выполняются студентами в 1 семестре после изучения тем 1-2 и 3-4 соответственно. Третья и ...

0 комментариев


Наверх