1. Коллаген; 2. Протеогликан и 3. Гликопротеины, которые все при циррозе печениобнаруживаются по повышенным концентрациям в печени (73).

Коллаген представляет собой гетерогенный класс протеинов, их аминокислотный состав на одну треть представлен глицином и на од­ну четверть пролином и гидрооксипролином. Коллаген очень устойчив по отношению к протеолитическому распаду, только специфические ферменты (коллагеназы) расщипляют коллаген.

В печени человека можновыделить пять различных типов коллаге­на, имеющих структурные различия между собой: коллаген типа I, III, IV, V, VI. В нормальной печени человека коллаген типа I и типа III составляют примерно треть всего коллагена печени, кото­рый составляет, в общем, 2-8 мг/1г сырого веса печени. Содержание коллагена повышается при циррозе до 30 мг/1мг сырового веса пече­ни, так что в конечной стадии цирроза печени печень может содер­жать примерно 15 г коллагена. Коллаген типа IV, V и VI в нормаль­ной печени человека количественно представляют собой менее значи­мые компоненты. Все типы коллагена находятся, в том или ином ко­личественном выражении, в области портального факта, в пространс­тве Дисса и в фибротических фактах печени, причем гепатоциты, купферовские клетки, клетки Ито, эндотелиальные клетки синусоида, а также клетки портального тракта и воспалительные клетки способ­ны к синтезу коллагена.Фибриногенез: под фибриногенезом понимают образование соединительной ткани, например, в печени.При всех формах цирроза печени до сих пор наблюдалось повышенное содержа­ние коллагена.При биосинтезе коллагена внутриклеточно в качестве

- 17 -

предстадий сначала образуется препроколлаген и после отщепления

аминокислот получается преколлаген, гидроксилированием остатков

лизина или пролина, например, посредством внутриклеточной пролин­гидроксилазой.Определение активности печеночной пролингидроксила­зы в пунктатах печени применяется для характеристики коллагенсин­тетазы, поскольку может быть обнаружена корреляция между синтезом коллагена и активностью этого фермента в легочной ткани.Проколла­ген подвергается при секреции из клеток, а также внеклеточ­но,дальнейшим ферментативным превращениям посредством проколла­генпептидаз,до того, как он внеклеточно образует соответствующие структуры коллагеновых фибрилл.На поверхности новообразованных коллагеновых фибрилл, а также и в плазме могут быть образованы проколлагеновые фибриллы.По этой причине производится радиоимму­нологическое определение проколлагеновых пептидов, в особенности, проколлагеновых пептидов типа 3, в плазме, для охарактеризации метаболизма коллагена при заболеваниях печени.

Метаболизм липидов и липопротеинов в печени.

Роль печени в метаболизме липидов и липопротеинов состоит в синтезе липидов (триглицериды, холестерин и фосфолипиды), липоп­ротеинов (ЛГОНП и ЛПВП), апопротеинов, липопротеинов и ферментов метаболизма липопротеинов и жиров (лецитин-холестерин-ацилтранс­феразы (ЛХАТ), а также в катаболизме хиломикрон, остатков ЛПОНП, ЛПНП и ЛПВП.

В липидном и липопротеиновом обмене жирные кислоты с коротки­ми и средними цепями транспортируются из пищи через воротную вену прямо в печень, в то время как жирные кислоты с длинными цепями должны расщепляться в слизистой оболочке тонкого кишечника на триглицериды, они, как и холестерин пищи, транспортируются в виде хиломикрон.Хиломикроны, которые через грудной проток попадают в кровь, посредством липопротеилипазы превращаются в остатки хило­микрон, которые воспринимаются Е-рецепторами аполипопротеинов пе­чени.Экзогенный холестерин здесь смешивается с эндогенным холес­терином и выделяется печенью с желчью, метаболизируется в желчные кислоты или с синтезируемыми в печени триглицеридами выводится в кровь в виде ЛПОНП.

ЛПОНП в качестве важнейшего богатого триглицеридами липопро­теина синтезируется печенью, в крови подвергается метаболическому каскаду при взаимодействии с липопротеинлипазой и, вероятно, так­же при участии печеночной триглицеридлипазы в ЛПНП

- 18 -

(рис.34.6).ЛПНП представляют собой для переферических клеток

главный источник холестерина.С другой стороны, частичы ЛПНП восп­ринимаются рецепторами ЛПНП гепатоцитов в клетки печени и лизосо­мальными ферментами разрушаются на компоненты.В гепатоцитах повы­шение содержания свободного холестерина вызывает торможение HMG-СоА-редуктазы, ключевого фермента синтеза холестерина, акти­вацию ацил-КоА-холестерин-ацилтрансферазы и следовательно, накоп­ление свободного холестерина в форме эфиров холестерина и, нако­нец, торможение образования рецепторов ЛПНП в клетках, следствием чего является поглощения холестерина.Зависимое от рецепторов пог­лощение ЛПНП представляет собой существенный элемент регуляции синтеза холестерина в теле и гомеостаза холестерина (10).

Наряду с ЛПОНП в печени также происходит первый этап синтеза ЛПВП, образования ЛПВП и передача их в кровь.При воздействии ле­цитин-холестерин-ацилтрансферазы (ЛХАТ), новообразованные ЛПВП превращаются в ЛПВП, причем освобождается эфир холестерина, кото­рый переносится на ЛППП и ЛПВП.ЛПВП транспортируют холестерин из переферических клеток в печень обратно и разрушаются в печени (рис.34.6).Таким образом, ЛПВП представляет собой резервуар для избыточного холестерина переферических клеток, который транспор­тируется к печени и там образует запас холестерина, который ис­пользуется для желчной секреции холестерина, распада желчных кис­лот или для повторной утилизации.Вследствие этой центральной роли печени в метаболизме липопротеинов при заболеваниях печени имеют место качественные и количественные изменения липидов плазмы.

Нарушения метаболизма липопротеинов при заболеваниях печени.

При заболеваниях печени с желтухой нередко наблюдается повы­шение неэстерифицированного холестерина в сыворотке, в то время как уровень холестерина оказывается очень часто ?.Пониженный уро­вень эфиров холестерина в плазме при заболеваниях печени может рассматриваться во взаимосвязи с пониженной активностью леци­тин-холестерин-ацилтрансферазы (ЛХАТ) в пораженной печени, что находит отражение также в переферической крови и, таким образом, в уменьшенной этерификации холестерина жирными кислотами.При хро­нической застойной желтухе вследствие регургитации желчи, богатой холестерином и лецитином, в плазме наблюдается повышение свобод­ного холестерина и лецитина в крови.

- 19 -

Гипертриглицеридемия, которая может наблюдаться при остром и хроническом гепатитах, а также при холестазе, и сильно связана с частицами ЛПВП, обогащенными триглицеридами, объясняется пониже­нием активности печеночной липазы, которая в норме отщепляет триглицериды.С другой стороны, появление богатых триглицеридами ЛПВП при застойной желтухе может объясняться понижением содержа­ния эфиров холестерина в частицах ЛПВП вследствие уменьшения ак­тивности ЛХАТ при уменьшении образования эфиров холестерина.

У больных с холестазом в плазме в 99% наблюдается особый ли­попротеин, так называемый липопротеин Х (ЛП-Х), в то время как при отсутствии холестаза ЛП-Х в 97% не может быть обнаружен в плазме (80).Для дифференциального диагноза желтухи, тем не менее, определение липопротеина Х бесполезно, поскольку он повышается при внутрипеченочном и внепеченочном холестазе.

Клинически липопротеинемия при хронической застойной желтухе приводит к образованию ксантом в коже, в которых обнаруживаются ошеломляющие количества прежде всего эстерифицированного холесте­рина, наряду со свободным холестерином.

Метаболизм и кишечно-печеночная циркуляция желчных кислот.

Желчные кислоты подвергаются кишечно-печеночной циркуля­ции.Ежедневно в печени синтезируется 200-600 мг желчных кислот из холестерина.Этот синтез выравнивается дневной потерей желчных кислот в кале (200-600 мг) и в моче (0,5 мг), так что запас желч­ных кислот в организме человека остается постоянным и равным 3 г. В печени также происходит конъюгация желчных кислот с аминокисло­тами глицином и таурином, сульфатирование, глюкуронирование и глюкозирование.Выделяемые в желчь желчные кислоты при голодании преимущественно попадают в желчный пузырь.Во время пищеварения после сокращения желчного пузыря запас желчных кислот 2-3 раза проходит кишечно-печеночный цикл, причем основная часть желчных кислот резорбируется в терминальной части тонкого кишечника, так что ежедневно, в случае 3-4-кратного приема пищи 12-36 г желчных кислот поступает в тонкий кишечник.Только незначительная часть желчных кислот поступает в толстый кишечник и метаболизируется ферментами микробов.Часть этих желчных кислот резорбируется в толстом кишечнике.Резорбируемые в кишке желчные кислоты кровью воротной вены доставляются к печени и большей частью воспринима­ются гепатоцитами.Небольшая часть желчных кислот экстрагируется

- 20 -

гепатоцитами из крови воротной вены и поступает в переферическую

циркуляцию, так что при физиологических условиях концентрация

желчных кислот в переферической крови составляет 120-200 мкг/дл

(3-5 мкмоль/л), что очень низко.Циркулирующие в переферической

крови желчные кислоты лишь незначительно выделяются с мочой (0,5

мг/сут=1,3 мкМ/сут), поскольку печень эти желчные кислоты экстра­гирует с высокой эффективностью и выделяет с желчью.Таким спосо­бом запас желчных кислот сохраняется посредством кишечной экс­тракции и секреции в желчь (рис.34.7)(14).

Синтез желчных кислот.

В печени происходит синтез первичных желчных кислот (холевая и хенодезоксихолевая кислоты) из неэстерифицированного холестери­на.Первый шаг синтеза желчных кислот состоит в 7а-гидроксилирова­нии холестерина при воздействии расположенной в микросомах холес­терин-7а-гидроксилазы.Это ферментативное 7а-гидроксилирование хо­лестерина является шагом, определяющим скорость биосинтеза желч­ных кислот, активность фермента холестерин-7а-гидроксилазы регу­лируется количеством желчных кислот, воспринимаемых гепатоцитами из воротной вены, посредством торможения по принципу обратной связи.Последующие шаги биосинтеза состоят в перемещении двойной связи от 7а-гидроксихолестерина к 7а-гидроксихолес­тен-4-еn-3-ону.Этот промежуточный продукт представляет собой пункт разветвления для синтеза в направлении холевой кислоты или хенодезоксихолевой кислоты.При помощи 12а-гидроксилирования пос­редством расположенной в эндоплазматическом ретикулуме 12а-гид­роксилазы происходит синтез холевой кислоты.После прохождения этого места разветвления в цитозоле происходит насыщение двойной связи и восстановление 3-оксо-группы в 3а-гидроксигруппу.Когда эти ферментативные реакции на стероидном ядре заканчиваются, при­чем две гидроксигруппы являются предступенями для хенодезоксихо­левой кислоты или три гидроксигруппы являются предступенями холе­вой кислоты в стероидном ядре, то происходит укорочение боковой цепи в митохондриях после гидроксилирования у С-24 и образуются С-24 желчные кислоты, т.е. хенодезоксихолевая или холевая кислоты (детали биосинтеза см. Matern и Gerok)|52|(рис.34.8).

Конъюгация желчных кислот в печени.

В печени желчные кислоты перед выделением в желчь конъюгируют с аминокислотами глицином и таурином в соотношении 3:1.Возможно

- 21 -

также сульфатирование (65), глюкуронирование (2) и глюкозирование

желчных кислот (55) в печени человека (рис.34.9).При помощи этих

конъюгаций повышается растворимость желчных кислот.Выделяемые с

желчью желчные кислоты в кишечнике подвергаются, если они всасы­ваются неизмененными, дальнейшему метаболизму при помощи бактери­альных ферментов.

Интерстициальное всасывание и бактериальный метаболизм желчных кислот.

Неконъюгированные желчные кислоты и глицин-конъюгированные дигидроксилированные желчные кислоты могут всасываться пассивной диффузией в верхней тонкой кишке, поскольку эти желчные кислоты не диссоциируют.Поскольку в просвете верхней тонкой кишки значе­ние рН составляет от 5,5 до 6,5 и значения рК для свободных не­конъюгированных желчных кислот составляют от 5,0 до 6,5 и для глицин-конъюгированных желчных кислот составляют между 3,5 и 5,2, то резорбция этих желчных кислот возможна в верхней тонкой кишке. Основное количество конъюгированных желчных кислот, в особеннос­ти, полярных таурин-конъюгированных желчных кислот и тригидрокси­лированных желчных кислот, резорбируется вследствие диссоциации и посредством активного транспорта в терминальном отделе подвздош­ной кишки.

Желчные кислоты, которые поступают в слепую кишку, подверга­ются воздействию бактериальных ферментов.Под действием этих фер­ментов происходит деконъюгация глицин- и тауринкоагулированных желчных кислот, к 7а-дегидроксилированию и к 7а-дегидрогенизиро­ванию желчных кислот.Вследствие бактериального 7а-дегидроксилиро­вания из первичных желчных кислот, холевых и хенодезоксихолевых кислот приводит к 7-кетолитохолевой кислоте, которая в печени превращается в третичную желчную кислоту, уродезоксихолевую кис­лоту (рис.34.8)

Транспорт желчных кислот в воротную вену. Резорбируемые в кишечнике желчные кислоты вскоре исключитель-

но кровью воротной вены переводятся в печень. В крови желчные

кислоты транспортируются главным образом с альбумином, а также

будучи связанным с ЛПВП. Концентрация желчных кислот в крови во­ротной вены составляет 800 мкг/л (20 мкМ/л), т.е. примерно в 6 раз выше, чем в периферической крови. После еды концентрация желчных кислот в крови воротной вены повышается от 2 до 6 раз.

- 22 -

Поглощение желчных кислот или секреция печенью

Гепатоцеллюлярное поглощение желчных кислот из синусоидальной крови исключительно эффективно, поскольку при одноразовом пассаже крови более чем 80% желчных кислот экстрагируется из портальной крови гепатоцитами. Поглощение желчных кислот представляет собой осуществляемый переносчиком, зависимый от натрия транспорт, кото­рый определяется активностью Nа 5+ 0, К 5+ 0 - АТФазы и управляется кине-

тикой Михаэлиса-Ментена. При этом максимальная скорость поглощея

(V 4max 0) печенью желчных кислот больше, чем транспортный максимум

(Т 4m 0) желчной экскреции (см.рис. 34.2).

После коньюгации желчных кислот в гепатоцитах происходит сек­реция желчных кислот в желчные канальцы. Секреция желчных кислот в желчные канальцы также осуществляется с помощью переносчика, хотя и независимого от натрия, причем физиологический внутрикле­точный отрицательный мембранный потенциал предоставляет необходи­мую силу для канальцевой экскреции ионов желчных кислот в желчные канальцы (58)(см.рис.34.2). Рецепторные и транспортные белки ге­патоцитов для поглощения, внутриклеточного транспорта и секреции желчных кислот в желчь частично охарактеризованы (11).

Образование желчи.

Желчь представляет собой водный раствор желчных кислот, хо­лестерина, фосфолипидов, билирубина и неорганических электроли­тов. Образование жнлчи производится посредством гепатоцитов, при­чем желчные канальцы изменяют концентрацию и состав желчи. По это причине различают гепатоцитарное образование желчи и канальцевые образование желчи.

Гепатоцитарный поток желчи.

При гепатоцитарной секреции желчи в желчные канальцы можно различать зависимый от желчных кислот поток желчи и независимый от желчных кислот поток желчи. Это различие получается из линей­ного соотношения между гепатоцитарной секрецией желчных кислот и потоком желчи. Также если гепатоциты больше не выделяют желчных кислот, еще происходит поток желчи в желчные канальцы, так назы­ваемый независимый от желчных кислот гепатоцитарный поток желчи. У людей образуется около 11 каналикулярной желчи на 1 мкмоль вы­деляемых желчных кислот. Поскольку при интактной энтерогепатичес-

- 23 -

кой циркуляции выделяется около 15 мкмолей желчных кислот в мину­ту, это обозначаетзависимый от желчных кислот каналикулярный по­ток желчи, равный примерно 225 мл/сутки. Поскольку независимый от желчных кислот каналикулярный поток желчи составляет в то же вре­мя около 225 мл/сут и дуктулярная секреция покрывает 150 мл/день, у людей ежедневно вырабатывается около 600 мл желчи (рис.34.10)(77).

Зависимые от желчных кислот каналикулярное образование желчи происходит таким образом, что желчные кислоты путем активного транспорта выделяют в качестве анионов через мембрану желчного канальца в каналец. Для выравнивания осмотического равновесия и для достижения электронейтральности в желчный каналец поставляют­ся вода и ионы натрия, через межклеточные "тесные соединения" в желчный каналец (см.рис.34.2). С транспортом желчных кислот в желчные канальцы связан транспорт лецитина и холестерина в желчь, но не транспорт билирубина. Независимый от желчных кислот канали­кулярный поток желчи, вероятно, происходит при помощи опосредуе­мого Nа 5+ 0/К 5+ 0-АТФ-азой Nа 5+ 0-транспорта и стимулируется фенобарбита-

лом. Он примерно равен зависимому от желчных кислот каналикуляр­ному образованию желчи.

Поток желчи в ходах.

В желчных ходах происходит секреция и/или резорбция неоргани­ческих электролитов и воды, причем гормон секретин ответственен за секрецию в ходах. Примерно 30% основного потока желчи относит­ся к секреции желчи в ходах.

Нарушение метаболизма желчных кислот при заболеваниях печени

Циркулирующие в кишечно-печеночном круге желчные кислоты выполняют важные функции (табл.34.3). Из этих главных функ­ций происходят клинические последствия, причем при заболева­ниях печени происходят нарушения в метаболизме желчных кис­лот (31).Болезни печени могут приводить к нарушениям синте­за, конъюгации и желчной секреции желчных кислот, а также к нарушениям поглощения желчных кислот из воротной вены.

Нарушения биосинтеза желчных кислот наиболее выражены при циррозе печени (52).При циррозе печени наблюдается уменьшенное образование холевой кислоты вследствие понижения активности 12а-гидроксилазы при биосинтезе холевой кислоты в

- 24 -

печени.Понижение интенсивности биосинтеза холевой кислоты

приводит к понижению запаса холевой кислоты у больных с цир­розом печени.Поскольку бактериальное 7а-дегидроксилирование холевой кислоты в дезоксихолевую при циррозе печени наруше­но, то при циррозе печени наблюдается также уменьшение запа­са дезоксихолевой кислоты.Хотя при циррозе печени биосинтез хенодезоксихолевой кислоты протекает без повреждений, общий запас желчных кислот вследствие уменьшения синтеза холевой кислоты уменьшается наполовину.Вследствие уменьшения запаса желчных кислот имеет место уменьшение концентрации желчных кислот в тонком кишечнике при приеме пищи.Таким образом, ре­зорбция жирорастворимых витаминов и жиров нарушается, по этой причине при циррозе печени имеют место куриная слепота (недостаток вит.А), остеомаляция (недостаток витамина Д), нарушения свертывания крови (недостаток вит.К) и стеаторрея.

Конъюгация желчных кислот с аминокислотами глицином и таурином в норме происходит при соотношении 3:1 (52).При тя­желом гепатите конъюгация холевой кислоты с глицином пониже­на, так что определение скорости этой конъюгации предлага­лось в качестве прогностического теста для течения острого гепатита.Напротив, сульфатирование желчных кислот при забо­леваниях печени не уменьшается, поскольку активности суль­фотрансфераз желчных кислот в пунктатах у больных с легкими повреждениями печеночной паренхимы или у больных с тяжелым лостазом примерно равны (50).В отличие от сульфатирования, ферментативное глюкуронирование желчных кислот при циррозе печени по сравнению с нормой понижено, как показали измере­ния активности УДФ-глюкуронилтрансферазы желчных кислот в ткани печени при различных заболеваниях печени (56).Также билирубин в печни человека конкурентно тормозит глюкурониро­вание желчных кислот (53). То, что все же при холестазе у человека наблюдается повышенное выделение глюкуронидов желч­ных кислот в моче, можно объяснить глюкуронированием желчных кислот в почках человека (56).

При заболеваниях печени, в особенности при циррозе пече­ни, может быть нарушена секреция желчных кислот (14, 37). Уменьшение секреции желчных кислот при циррозе печени приво­дит к упомянутой стеаторрее и к уменьшению резорбции жиро­растворимых витаминов с соответствующим синдромом недоста­точности.

- 25 -

Печеночное поглощение желчных кислот при заболеваниях печени также нарушено. В то время как у здоровых печень экс­трагирует около 85% коньюгированных тригидроксилированных желчных кислот и 60-70% коньюгированных дигидрооксилирован­ных желчных кислот из крови воротной вены, при заболеваниях печени вследствие внепеченочного или внутрипеченочного пор­тосистемного шунта кровотока, вследствие уменьшенной способ­ности гепатоцитов поглощать желчные кислоты из крови и вследствие рефлекса желчных кислот из желчи в кровь имеет место повышение концентрации желчных кислот из крови. Это явление используется в диагностических целях, поскольку по­вышение концентрации желчных кислот в сыворотке представляет собой чувствительный параметр для распознавания заболеваний печени.

Метаболизм желчных кислот и холестаз.

Холестаз можно определить как нарушение секреции желчи, причем каждая стадия секреции, начиная от образования желчи в мембране желчного канальца гепатоцитов (внутрипеченочный холестаз) до выделения желчи через сосочек двенадцатиперс­тной кишки (внепеченочный холестаз).Следствием холестаза яв­ляется повышенная концентрация желчных кислот в гепатоцитах с торможением по принципу обратной связи ферментов, опреде­ляющих биосинтез желчных кислот, то есть холестерин-7а-гид­роксилазы.Это приводит к уменьшению биосинтеза желчных кис­лот.Посредством повышения внутрипеченочной концентрации желчных кислот, при холестазе желчные кислоты применяются в качестве субстратов для сульфатирования, глюкуронирования и гидроксилирования.При этом образуются не только сульфатиро­ванные и глюкуронированные желчные кислоты, а также 1- и 6-гидроксилированные желчные кислоты в печени при холестазе (1).

Наблюдаемые при холестазе повышенные внутрипеченочные концентрации желчых кислот, в особенности дегидроксилирован­ные желчные кислоты, как хенодезоксихолевые кислоты, могут разрушать гепатоциты в качестве детергентов.Они могут изме­нять состав плазматических мембран гепатоцитов, а также на­рушать биотрансформацию эндогенных субстратов (желчных кис­лот холестерина) и экзогенных веществ (медикаменты), напри­мер, посредством торможения цитохрома Р450 (67,68,76).Таким

- 26 -

же образом внутрипеченочное повышение концентраций желчных

кислот может усиливать холестаз в форме порочного круга.

Метаболизм билирубина.

При физиологических условиях концентрация билирубина в плазме составляет 0,3-1,0 мг/дл (5,1-17,1 мкМоль/л).Если уровень билирубина в плазме составляет около 3 мг/дл (50 мкМоль/л), то клинически это проявляется в форме желтухи склер, слизистых оболочек и кожи.

Билирубин происходит из ферментативного разрушения ге­моглобина или гемопротеинов (цитохром 450, цитохром В5, ка­талаза, триптофанпирролаза, миоглобин).После ферментативного освобождения гема из гемоглобина или гемопротеинов посредс­твом микросомальных гемоксигеназ в мембране цитоплазматичес­кого ретикулума посредством активирования кислорода при воз­действии НАДФ-цитохром-с-редуктазы происходит образование а-гидрокси-гема, причем активированный кислород воздействует на а-метиновые мостики циклического тетрапиррола.Благодаря этому расщепляется протопорфириновое кольцо при освобождении монооксида углерода, и возникает комплекс биливердина с желе-

зом.После гидролиза комплекса биливердина с железом на железо

и биливердин IXа посредством биливердинредуктазы цитозоля

происходит восстановление центрального метинового кольца би­ливердина в биливердин IXa2 (45).Поскольку три фермента (микросомальная гемоксиназа и НАДФН-цитохром-с-редуктаза, а также биливердинредуктаза цитозоля), которые катализируют образование билирубина из гема, в форме ферментативного комплекса на поверхности эндоплазматического ретикулума, би­ливердин на этом комплексе восстанавливается в билирубин (рис. 34.11)(91).Таким образом, образованный из биливердина билирубин представляет собой субстрат для билирубин-УДФ-глю­куронилтрансферазы, содержащейся в эндоплазматическом рети­кулуме.УДФ-глюкуронилтрансфераза катализирует образование билирубинмоноглюкуронидов.Затем происходит синтез билирубин­диглюкуронидов, осуществляемый УДФ-глюкуронилтрансферазой (рис.34.12)(6).Для образования билирубиндиглюкыронидов из билирубинмоноглюкуронидов обсуждались возможности спонтанно­го образования диглюкуронидов (83) или ферментативный пере­нос глюкуроновой кислоты от молекулы билирубинмоноглюкурони­да при связывании билирубиндиглюкуронидов посредством били-

- 27 -

рубинглюкуронозид-глюкуронозилтрансферазы (40).посредством глюкуронирования нерастворимый в воде билирубин приобретает водорастворимость.

Нерастворимость в воде образующегося при разложении гема билирубина IXa основывается на том, что образуются внутримо­лекулярные водородные мостики между группой пропионовой кис­лоты пиррольного кольца и азотом не находящихся по соседству внешних пиррольных колец.Таким образом достигается ?стери­чески складывание билирубина, что уменьшаются гидрофобные,то есть липофильные свойства.По этой причине неконъюгированный билирубин IXa диффундирует в мозг, плаценту и слизистую ки­шечника.При воздействии световой энергии с длиной волны от 400 до 500 нм внешние пиррольные кольца молекулы билирубина IXa могут поворачиваться вокруг двойной связи.Посредством такой фотоизомеризации молекулы билирубина в так называемый фотобилирубин больше не могут образовываться внутримолеку­лярные водородные мостики.Таким образом, билирубин станивит­ся водорастворимым и, следовательно, он может без конъюгации с глюкуроновой кислотой выделяться в желчь.Эффект фотоизоме­ризации билирубина применяется в случае фототерапии желтуш­ных новорожденных.Посредством облучения кожи синим светом, находящийся в коже билирубин IXA переводится в водораствори­мый фотобилирубин, который связывается с альбумином и кровью переносится к печени и там выводится в желчь.С помощью такой фототерапии удается снизить уровень неконъюгированного били­рубина в плазме до концентрации 5 мг/дл (85 мкМоль/л), даль­нейшее снижение уровня билирубина посредством фототерапии невозможно.

Количественно ежедневно у взрослых образуется около 250-350 мг билирубина на кг при распаде гема.При этом глав­ным источником образования билирубина является гем гемогло­бина.Около 70% ежедневно образующихся желчных пигментов воз­никают из гемоглобина при распаде эритроцитов в ретикуло-эн­дотелиальной системе (в селезенке, костном мозге и в печени).

Участие печени в ежедневном образовании билирубина сос­тавляет 10-37%, причем в печени главным источником служат микросомальные цитохромы, каталаза, триптофанпирролаза и ми­тохондриальный цитохром b.Также в плазме связанные с гаптог­лобином гемоглобин,метгемоглобин или метгемальбумин служат источником печеночного образования билирубина,поскольку ге-

- 28 -

патоциты воспринимают компоненты гема для образования били­рубина.

Транспорт билирубина

В плазме транспортируется как конъюгированный с глюкуро­новой кислотой билирубин, так и неконъюгированный, связанный с альбумином билирубин.При этом конъюгированный с глюкуроно­вой кислотой билирубин характеризуется незначительным сродс­твом с альбумином, как неконъюгированный билирубин.Таким об­разом, незначительная часть билирубинглюкуронида при желтухе не связана с альбумином, она фильтруется через клубочки.Не­большая часть не реабсорбируется в канальцах, а выделяется с мочой и обусловливает наблюдаемую при холестазе билирубину­рию.Также наблюдается очень прочное, вероятно, ковалентное связывание билирубинглюкуронида с альбумином у больных с хо­лестазом с коньюгированной гипербилирубинемией (89).Посколь­ку ковалентно связанный с альбумином билирубинглюкуронид об­наруживает незначительный печеночный и почечный клиренс, объяснение состоит в том, что улучшение желтухи в плазме сопровождается еще повышенными значениями конъюгированного билирубина, в то время как в моче билирубин уже больше не наблюдается.

Неконъюгированный билирубин в плазме имеет высокое сродство с местом связывания альбумина, таким образом, не­конъюгированный билирубин в плазме появляется в нерастворен­ном виде.При высокой концентрации билирубина в плазме не­конъюгированный билирубин связывается с альбумином на двух других местах с незначительным сродством.Из мест связывания с меньшим сродством неконъюгированный билирубин может вытес­няться при помощи свободных желчных кислот, из мест связыва­ния с более высоким связыванием посредством медикаментов, таких, как сульфаниламиды, анальгетики и нестероидные анти­ревматики.

В печени находящийся в плазме крови связанный с альбуми­ном неконъюгированный билирубин, а также конъюгированный с глюкуроновой кислотой билирубин очень быстро воспринимается синусоидной стороной гепатоцитов.Прием гепатоцитами билиру­бина производится рецепторными белками (5) и соответствует кинетике насыщения по Михаэлису-Ментену.Конгъюгированный би­лирубин, бромсульфалеин, и синдоциановый зеленый также восп-

- 29 -

ринимаются теми же рецепторными белками на синусоидной сто­роне гепатоцитов, в то время как желчные кислоты не конкури­руют с билирубином за поглощение их гепатоцитами.

После транспорта билирубина через плазматическую мембра­ну синусоида гепатоцитов билирубин связывается на транспорт­ных белках в цитозоле; также обсуждается вопрос о связанном с мембранами интрагепацитарным переносом билирубина.В гепа­тоцитах билирубин, независимо от того, забирается ли он из плазмы или образуется в гепатоцитах из гемопротеинов, пере­водится при помощи микросомальной билирубин-УДФ-глюкуронилт­рансферазы в билирубиндиглюкуронид.Перед тем, как образую­щийся в гепатоцитах билирубин или воспринятый гепатоцитами билирубин подвергается глюкуронированию,для части билирубина возможен рефлюкс в плазму с возобновленным гепатоцитарным поглощением билирубина.В небольшой части также возможна внутрипеченочная деконъюгация билирубинглюкуронида с рефлюк­сом неконъюгированного билирубина в плазму.На этой основе можно объяснить, почему у больных с холестазом также наблю­даются повышенные концентрации неконъюгированного билирубина в плазме.

После конъюгации билирубина глюкуронированный билирубин, вероятно, с помощью переносчика, выделяется через мембрану канальца в желчь (рис.34.13).Бромсульфалеин, индоциановый зеленый и рентгеноконтрастные вещества желчных путей конку­рируют за систему транспорта билирубина в мембране желчного канальца, которая подчиняется кинетике насыщения.В общем, секреция билирубина посредством мембран желчного канальца при переносе билирубина из плазмы в желчь представляет собой шаг, определяющий скорость.Желчные кислоты, напротив, сецер­нируются посредством другой транспортной системы мембран желчный канальцев, в желчь.Поскольку при синдроме Дуби­на-Джонсона имеет место генетический дефект транспортной системы мембраны желчного канальца для секреции конъюгиро­ванного билирубина и бромсульфалеина, то желчные кислоты се­цернируются в желчь независимо от мембраны канальца.Хотя желчные кислоты используют другую транспортную систему, по сравнению с конъюгированным билирубином, в мембрану желчного канальца, то обсуждается секреция билирубина в желчь в форме смешанных мицелл с желчными кислотами, фосфолипидами и хо­лестерином.Таким образом объясняется секреция водораствори-

- 30 -

мого неконъюгированного билирубина IXа в желчь, которая в

норме составляет меньше, чем 10% от общего билирубина в пе­чени и при гемолитической анемии может составлять до 3% ка­наликулярной билирубиновой секреции.Поскольку неконъюгиро­ванный билирубин растворим в желчи, то этим объясняется час­тота образования билирубиновых пигментных желчных камней при хроническом гемолизе.

В желчных путях и в кишке сецернируемый билирубинглюку­ронид не всасывается, но проходит через тонкий кишечник и гидролизуется в терминальном отделе тонкой кишки и толстой кишки при помощи бактериальной в-глюкуронидазы.Билирубин восстанавливается бактериями толстого кишечника до уробили­ногена и частично окисляется до уробилина в фекалиях.Менее чем 20% ежедневно образуемого в толстом кишечнике уробилино­гена участвуют в кишечно-печеночном цикле: он всасывается втонком кишечнике, транспортируется в желчь, в то время как оставшиеся 10% находятся в переферической циркуляции и потом выводятся в мочу (см.889).При гемолизе, гепатоцеллюлярных заболеваниях печени и при портосистемном шунте выведение уробилина в моче увеличивается.

Биотрансформация - биохимия обезвреживания в печени.

Эндогенно и экзогенно вводимые вещества могут в орга­низме чаловека вследствие их растворимости в липидах дейс­твовать токсически.Экзогенно вводимые липидорастворимые ве­щества в слизистой тонкого кишечника могут поступать с кровью в печень и, в зависимости от печеночного клиренса, участвовать в системной циркуляции и попадать в другие орга­ны.Они не могут, как и эндогенные, липидорастворимые вещест­ва, выделяться почками, а после гломерулярной фильтрации вследствие их растворимости в липидах подвергаться в каналь­цах почек обратной диффузии.

Обезвреживание (биотрансформация) липидорастворимых ве­ществ достигается, как правило, в две фазы, посредством пе­реведения их в водорастворимые метаболиты.В фазе 1 обезвре­живанию подвергаются липидорастворимые вещества окислению, восстановлению или гидролизу.Продукты реакции в фазе 1 обезвреживания нередко в фазе 2 подвергаются реакциям конъ­югации.Таким образом, возникают водорастворимые конъюгаты,

- 31 -

которые выделяются почками или в желчь.Как правило, токси­ческие вещества проходят обе фазы обезвреживания, ло того, как они в виде конъюгатов элиминируются из организма челове­ка.

Посредством ферментативных реакций фазы 1, таких как окисление, восстановление или гидролиз, функциональные груп­пы, такие как, например, гидроксильные группы, переводятся в липидорастворимое состояние.Важнейшая ферментативная система фазы 1 обезвреживания - это цитохром-Р450-монооксигеназная система.Она локализуется в эндоплазматическом ретикулуме и состоит из двух ферментов; НАДФН-цитохром-Р450-редуктазы и цитохрома Р450.Окисление органических соединений посредством цитохром-Р450-монооксигеназной системы в качестве фазы 1 обезвреживания достигается посредством размещения подлежаще­го обезвреживанию соединения на активном центре цитохрома Р450.Цитохром-Р450 представляет собой содержащий гем фер­мент, который ответственен за активирование кислорода и при­соединение кислородного атома в органическое соединение при образовании гидроксисоединение (рис.34.14).Восстановительные эквиваленты поставляются НАДФН-цитохром Р450-редуктазой, причем НАДФН переводится в НАДФ+.Таким образом, цитохром- Р450-монооксигеназная система играет центральную роль не только при обезвреживании чужеродных веществ, но также и при биосинтезе стероидных гормонов и желчных кислот.Возникающие таким образом гидроксилированные продукты фазы 1 обезврежи­вания могут, наконец, подвергаться реакциям конъюгации фазы 2 обезвреживания, например, глюкуронированию (рис.34.14).

Из реакций конъюгации при обезвреживании эндогенных (табл.34.4) и экзогенных веществ глюкуронирование у людей является самым важным процессом.При этой реакции конъюгации посредством УДФ-глюкуронилтрансферазы глюкуроновая кислота от УДФ-глюкуроновой кислоты переносится на чужеродное ве­щество или эндогенное вещество (билирубин, желчные кислоты, стероидные гормоны) при освобождении УДФ (12,54).

Поскольку конъюгаты глюкуроновой кислоты растворимы в воде, посредством глюкуронирования, которое возможно как в печени, так и вне печени (53,56), элиминация липидораствори­мых веществ становится возможной через почки и желчь.

Биотрансформация при заболеваниях печени.

- 32 -

В то время как рпи легком гепатите или при активности ферментов биотрансформации в печени незначительно отличаются от контролей , у больных с тяжелым гепатитом и тяжелым ак­тивным хроническим гепатитом или циррозом печени наблюдается понижение цитохрома-Р450 в печени.Также активность УДФ-глю­куронилтрансферазы желчных кислот печени человека понижается при циррозе печени (56).По этой причине при тяжелых заболе­ваниях печени, в особенности, при циррозе печени, метаболизм и элиминация лекарств могут быть значительно понижены.При заболеваниях печени, тем не менее, изменяется не только би­отрансформация медикаментов, но могут также необратимо меди­каменты повреждать печень.

Повреждения печени, вызванные медикаментами.

Повреждения печени, вызванные лекарствами, могут быть многообразными.Можно различать прямое, зависимое от фазы

повреждения печени, которое можно предусмотеть, и непредус­матриваемое, зависимое от дозы, повреждение печени.

При прямых,предусматриваемых, зависимых от дозы повреж­дениях печени медикамент вследствие биотрансформации превра­щается в токсические метаболиты, которые ковалентно связыва­ются с макромолекулярными составными частями клеток и, таким образом, ведут к повреждению печени, ожирению и некрозу.При­мером зависимости от дозы прямого предусматриваемого повреж­дения печени является интоксикация парацетамолом.

При непрямом, непредусмотренном, зависимом от дозы пов­реждения печени посредством лекарств метаболит вследствие биотрансформации в качестве гаптена может ковалентно быть связан с белком, где метаболит получает антигенные свойства. Таким образом, может произойти образование антител. Повтор­ное введение медикамента может непредсказуемо вести к некро­зу печеночных клеток. Повторный некроз голотаном является примером такого вида повреждения печени. Во многоих случаях патофизиология и биохимия возникновения индуцированных ле­карствами повреждений печени не известны. Хотя эмпирическая связь между различными классами лекарств и морфологическими проявлениями повреждения печени может и быть установлена (таб.34.5), существуют значительные перекрытия в гистологи­ческих образцах, вызванных лекарствами, повреждающих печень

- 33 -

(38).

Физиология циркуляции печени.

Снабжение печени кровью.

Печень снабжается кровь через A.hepatica и V.portae. Тончайшие разветвления A.hepatica и V.portae заканчиваются в синусоидах печени, которые без базальной мембраны образуются из эндотелиальных клеток и купферовских клеток. Посредством просветов между эндотелиальными клетками с величиной пор q 1-2 мкм вещества с молекулярным весом до 25000 могут диффун­дировать из синусоидов в пространство Дисса и таким образом омывать микроворсинки синусоидальной плазматической мембраны гепатоцитов.Эта пористость синусоида для перффузии гепатоци­тов имеет большое значение,поскольку в синусоидах имеет мес­то только небольшое гемодинамическое давление 2-3 мм.рт.ст. От синусоидов кровь воспринимается центральными венами, ко­торые после соединения с большими венами, осуществляют отток крови через V.v.hepaticae в v.cava inferior. Регуляция пече­ночной микроциркуляции производится, главным образом, через артериолы, тонус которых определяется гладкой мускулатурой под воздействием нервных стимулов гормонов и метаболитов (13).

Портальная вена воспринимает кровь из тонкого кишечника, селезенки, поджелудочной железы и желчного пузыря (рис.34.15).

A.hepatica, которая вытекает из Truncus coeliacus, снаб­жают печень артериальной кровью. Около 70-75% кровотока пе­чени производится посредством V.portae, в то время как на

А.hepatica падает 25-30% кровотока. Поскольку поток крови в печени составляет от 100-130 мл/мин/100 г печени, то крово­ток через V.portae составляет около 1000 мл/мин.. Давление в

A.hepatica примерно соответствует аортальному давлению, в то время как давление в воротной вене составляет между 6-10 мм рт.ст.. Давление в синусоидах печени лишь незначительно вы­ше, чем в тончайших печеночных венах и лежит примерно на 2-4 мм рт.ст. выше давления в печеночных венах. Высота давления в портальной вене зависит, с одной стороны, от регуляции по­дачи крови через мезентериальные и спланхнические артериолы и, с другой стороны, от внутрипеченочного сопротивления. Давление в A.hepatica обладает лишь незначительным воздейс-

- 34 -

твием на давление в воротной вене.

Насыщение кислородом крови A.hepatica соответствует тка­невому в других артериях. Насыщение кислородом V.portae в критическом состоянии на 85% выше, чем в периферических ве­нах, но значительно снижается при питании. Снабжение печени кислородом производится в критическом состоянии почти на по­ловину посредством A.hepatica и V.portae, причем, снабжение кислородом печени эффективнее, чем во многих других органах.

Падение давления крови вызывает авторегуляции снабжения крови печени таким образом, что сопротивление сосудов арте­риол A.hepatica падает, чтобы таким образом держать постоян­ный кровоток печени. Наоборот, при понижении давления в во­ротной вене, вероятно, повышается внутрипеченочное порталь­но-венозное сопротивление падает и сосуды максимально расши­ряются.

В снабжении крови печени зависит от взаимодействия A.he­patica и V.portae, таким образом, уменьшенная подача крови через V.portae приводит к подъему подачи крови через A.hepa­tica. Наоборот, уменьшенный кровоток в печени через A.hepa­tica коррегируется не через повышение снабжения кровью через портальную вену. Повышение давления в печеночных венах при­водит через сужение малых артериол к уменьшению подачи крови через A.hepatica.

для определения печеночного кровотока применяются как прямые методы, например, электромагнитное измерение потока, которое производится у людей при хирургическом вскрытиии жи­вота, так и непрямые методы. Непрямые методы основаны на техниках для определения печеночного клиренса какого-либо вещества (например, индоцианового зеленого) по циркуляции или по определению индикаторных кривых разведения (9).

Патофизиология портальной гипертензии.

Давление в портальной вене, если его определять по раз­ности давлений между абсолютным портально-венозным давлением и интраобдаминально измеренным системным венозным давлением (например, свободным давлением в V.hepatica), составляет 3-6 мм рт.ст. в горизонтальном положении тела.

Измерение давления в воротной вене.

Измерение давления в воротной вене может производиться

- 35 -

прямо в системе воротной вены или непрямо посредством изме­рения давления крови в том мемсте, которое реагирует на дав­ление в воротной вене.

Прямое измернеие давление в воротной вене может произво­диться посредством пункции системы воротной вены во время операции; посредством введения катетера в воротную вену че­рез вскрытую V.umbilicalis или посредством чрезкожной транс­печеночной пункции воротной вены. Непрямое определение дав­ления в воротной вене может производиться посредством перку­танной пункции пульпы селезенки, возможна так же перкутанная пункция паренхимы печени, а так же посредством измерения давления в закрытых печеночных венах.

При измернии давления в закрытых печеночных венах (WHVP=wedged hepatic vein pussure) давление измеряется пос­редством катетера, который через правое предсердие вводится по верхней полой вене до положения закрытия в периферической печеночной вене. Жидкость внутри катетера, перекрывающего печеночную вену, образует с кровью в печеночной вене, в си­нусоидах и воротной вене непрерывное пространство, так что измеренное давление в катетере отражает давление в синусои­дах печени. Это давление отражает при физиологических усло­виях также давление в воротной вене.

Посредством вводимого в печеночную вену, раздуваемого баллонного катетра становится возможным измерить при помощи раздуваемого баллона давление в перекрытой печеночной вене, а при помощи нераздуваемого баллона можно измерить свободное давление в печеночной вене.

Посредством измерения давления в перекрытой вене можно определить локализацию препятствия потоку, которое приводит к портальной гипертензии. При нахождении препятствия потоку перед синусоидами печени (например, тромбоз воротьной вены) запорное давление печеночной вены нормально, в то время как давление в воротной вене нормально (пренсинусоидально распо­ложенная портальная гипертензия). При рассмотрении кровотока в печеночных синусоидах (например, при алкогольном циррозе) запорное давление в печеночных венах соответствует давлению в воротной вене, так что повышение запорного давления в пе­ченочной вене эквивалентно повышению давления в воротной ве­не (синусоидально обусловленная портальная гипертензия). При наличии постсинусоидального внутрипеченочного препятствия

- 36 -

потоку заапорное давление в печеночнных венах может быть

меньше, чем давление в воротной вене, поскольку через межси­нусоидальные соединения при измерении запорного давления в печеночной вене может происходить выравнивание давления (постсинусоидально обусловленная внутрипеченочная обструк­ция). Если препятствие потоку локализуется после печени, то все печеночные вены одинаково подвергаются воздействию пре­пятствия потоку (например, Pericarditis constrictiva), поэ­тому запорное давление в печеночной вене повышается эквива­лентно давлению в воротной вене (рис.34.15).

Табл.34.6. Причины портальной гипертензии в соответствии с локализацией препятствия потоку

____________________________________________________________

Перед печенью:

Тромбозы

- селезеночная вена

- воротная вена

Внутри печени:

Пресинусоидально

- врожденный фиброз печени

- узелковая регенерация

- миелопролиферативные заболевания

- метастазы в печень

- шистоматозы

Синусоидально

- циррозы

Постсинусоидально

- заболевания, сопровождающиеся закупоркой вены (синдром

Будд-Чиари)

- тромбозы печеночной вены

- венозный клапан печеночных вен

После печени:

- перекрытие каудальной вены печени

- Pericarditis constrictiva

- недостаточность правого сердца

Подразделение портальной гипертензии в соответствии с локализацией препятствия потоку.

- 37 -

На основе локализации препятствия потоку портальная ги­пертензия подразделяется на предпеченочно, внутрипеченочно и постпеченочно обусловленную (табл.34.6).

Предпеченочно обусловленная портальная гипертензия.

Предпеченочно обусловленная портальная гипертензия обус­ловлена обструкцией системы воротной вены главным образом в форме тромбоза селезеночной вены. Причинами этих тромбозов могут стать инфекции, панкреатиты, опухоли, травмы или ги­перкоагулопатии различного генеза. Артерио-портальные веноз­ные фистулы (например, обусловленные травмами или внутрипе­ченочными новообразованиями) приводят главным образом пос­редством повышенного потока крови в системе воротной к пор­тальной гипертензии. При наличии предпеченочного обусловлен­ной портальной гипертензии повышается давление в воротной вене (например, измерение посредством пункции пульпы селе­зенки), в то время как запорное давление в венах печени ле­жит в пределах нормы. Клинически наблюдают варикозы пищевода и спленомегалия. Как правило, асцит наблюдается лишь тогда, когда дополнительно имеют место повреждения функции печени, которые сопровождаются уменьшением синтеза альбумина. Только при наличии острого тромбоза воротьной вены имеет место ран­нее появления асцита (81, 82).

Внутрипеченочно обусловленная печеночная гипертензия

При наличии внутрипеченочно обусловленной портальной ги­пертензии препятствие потоку находится:

- в пресинусоидальных венах

- в самих синусоидах

- в постсинусоидальных разветвлениях печеночной вены.

Прототипом пресинусоидальных внутрипеченочно обусловлен­ной портальной гипертензии является закупорка малых порталь­ных вен яйцами после инфицирования Schistosoma mansoni или japanicum (69). Также узловые регенерации печени (напри­мер, при синдроме Фелти, при склеродермии или после пересад­ки почки) могут стать причиной пресинусоидальной локализо­ванной портальной гипертензии. Конгенитально-печеночный фиб­роз может стать причиной пресинусоидально расположенной пор-

- 38 -

тальной гипертензии, наряду с инфильтрациями печени во взаи­мосвязи с миелопролиферативными заболеваниями, с метастаза­ми, при болезни Ходжкина или при саркоидозе. Также причиной пресинусоидально локализованной портальной гипертензии может быть гепатопортальной фиброз при винихлоридной болезни ра­ботников пластмассового производства при хронической инток­сикации мышьяком и медью или при гипервитаминозе А. Пресину­соидально внутрипеченочно обусловленные портальная гипертен­зия характеризуется повышенным давлением в воротной вене при нормльном запорном давлении в печеночной вене, если причины этой портальной гипертензии не приводят к увеличению отложе­ний коллагена в пространствах Дисса и, следовательно, к си­нусоидальному фиброзу. Клинически наблюдаются варикозы пище­вода и спленомегалия.

Прототипом синусоидально внутрипеченочно обусловленной портальной гипертензии является алкогольный цирроз печени, который рассматривается в качестве первичной причины пор­тально- венозного повышения давления при алкогольном циррозе печени в синусоидальном расположении коллагена и, таким об­разом, в причинении вреда интерсинусоидальным васкулярных коммуникаций (17). Синусоидальная обструкция ведет к эквива­лентному повышению портально-венозного давления и запорного давления в печеночных венах. Клинически этоприводит к обра­зованию портально-системного коллатерального кровообращения и очень часто к развитию асцита.

При постсинусоидально внутрипеченочно обусловленной пор­тальной гипертензии повреждается отток крови посредством окклюзии внутрипеченочных вен. Эта форма портальной гипер­тензии наблюдается при тромбозе внутрипеченочных вен (синд­ром Будд-Чиари), при веноакклюзионном заболевании и при ? клапанах печеночных вен (синдром Будд-Чиари) могут наступать у женщин при приеме оральных контрацептивов, у больных с по­лицитемией, или при других формах гиперкоагулопатий, а также при опухолевом сдавлении печеночных вен. Клинически наблюда­ется гепатомегалия, быстрое неступление асцита и развитие коллатералей в системе воротной вены.

Портальная гипертензия при циррозе печени приводит к повреждению кровотока в синусоидах. При некоторых формах цирроза печени, в особенности при первичном биллиарном цир­розе, а также при болезни Вильсона, гемохроматозе и при

- 39 -

постгепатитном циррозе печени, за возникновение портальной

гипертензии дополнительно ответственны просинусоидальные

компоненты. Также сосудистые соединения между наименьшими

ветвями A.hepatica и V.portae, которые также могут образовы­ваться при циррозе печени, участвуют в возникновении пор­тальной гипертензии и компенсируют уменьшенный портальный отток при циррозе печени. Прямые соединения сосудов между маленькими портальными венами и печеночными венами при цир­розе печени могут приводить к внутрипеченочными шунтами. Напротив, шунты между ветвями A.hepatica и V.v.hepatica при циррозе печени не наблюдаются (39).

Портальная гипертензия при алкогольном поражении печени приводит к расположению коллагеновых фибрилл в пространствах Дисса с увеличением величины этих пространств. Поэтому сину­соиды сужаются, в синусоидах повышается сопротивление потоку крови, происходит образование синусоидальных обусловленной портальной гипертензии. Поскольку коллагенация пространств Дисса наблюдается не только при алкогольном циррозе печени, а также уже на ранних стадиях алкогольного поражения печени, может наблюдаться синусоидально внутрипеченочно обусловлен­ная портальная гипертензия также без цирротической перест­ройки при алкогольной жировой печени и алкогольном гепатите. Также посредством увеличения объема гепатоцитов без фиброза, некроз или образование узлов может быть обусловлено при ал­когольном повреждении печени портальной гипертензией, таким образом, ригидная капсула печени при увеличении объема гепа­тоцитов повышается в случае увеличения внутрипеченочного давления (7). Уменьшение величины печени после гиспитализа­ции и прекращение приема алкоголя может, таким образом, при­вести к улучшению давления в воротной вене при алкогольном поражении печени.

Постпеченочно обусловленная портальная гипертензия.

Значительные заболевания, которые тормозят отток крови по печеночным венам, таким, как обструкция V.cava iferior проксимально от впадения легочных вен, Pericarditis cons­trictiva или тяжелая недостаточность трикуспидального клапа­на, ведут к возникновению картины, сходной с болезнью Будд-Чиари с портальной гипртензией.

- 40 -

Застойная печень.

При недостаточности печени с повышением давления в правом предсердии также наступает повышение давления в пече­ночных венах и центральных венах долей печнеи. Синусоиды расширяются в особенности в области центров долек или в зоне 3 ацинуса печени. Вследствие уменьшенного объема печени уменьшается подача кислорода к печени, как также венозный застой сильнее всего в центролобулярных областях или во внешней зоне ацинуса печени. В се это может приводить к центролобулярным некрозом печеночных клеток и при хроничес­кой трикуспидальной недостаточности или Pericarditis cons­trictiva к циррозу застоя.

Коллатеральное кровообращение при портальной гипертензии

Коллатеральной кровообращение, которое развивается при портальной гипертензии, зависит от расположения обструкции портально-венозной системы. При внепеченочной закупорке пор­тальной вены образуются дополнительные коллатерали, которые при коллатеральном кровообращении не наблюдаются после внут­рипеченочной обструкции системы портальной вены. Посредством портовенограммы, а лучше всего посредством спленопортографии представляется возможным представить себе после введения контрастного вещества выраженность коллатерального кровооб­ращения при портальной гипертензии.

Внутрипеченочная обструкция

(цирроз печени).

При повышении давления в короткой вене более 10 мм рт.ст. наступает образование коллатерального кровообращения посредством поаторного открывания сосудов, которые образут соединение портальной вены с V.cava superior или V.cava in­ferior. В то время как в норме 100% портального кровотока осуществляется через V.v.hepaticae, при циррозе печени толь­ко 13% портального кровотока производится через V.v.hepati­cae. Остальная часть крови воротной вены может протекать че­рез следующие соединения сосудов (рис.34.16):


Информация о работе «Лекции - Патофизиология (патофизиология печени)»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 133773
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
7373
0
0

... от нормальных генетическими свойствами, особенностями метаболизма, нарушениями функциональных особенностей. Это по сути - злокачественные клетки.2. Иной принцип классификации лейкозов - по типу лейкозных клеток: а) миелобластный; б) лимфобластный; в) монобластный; г) эритромиелобластный; д) промиелоцитарный; е) недиференцированный. Названия даны по нормальным предшественникам лейкозных клеток, ...

Скачать
13412
0
0

... функция дыхания. Интенсивность подъема температуры зависит от 2-х факторов патогенеза: 1. От количества эндогенных пирогенных веществ (интерлейкина 1, например) 2. От индивидуальной чувствительности центра терморегуляции (хорошо лихорадят кролики, плохо крысы - то пример видовой специфичности чувствительности центра терморегуляции). Вторая стадия лихорадка - после подъема температуры, ...

Скачать
42314
0
0

... , инсулина, его антагонистов, а также регуляции обмена веществ организма отражает по существу историю биологии и медицины. 2Сахарный диабет 0 представляет собой хроническое нарушение всех видов обмена веществ (преимущественно углеводного), обусловленное абсолютной или относительной инсулиновой недостаточностью и ха­рактеризующееся стойкой гипергликемией. Сахарным диабетом страдают около 2% всего ...

Скачать
92359
0
0

... зависит от вида и степени гормонального дисбаланса. Страдают в начале клетки-мишени, ферментные системы которых находятся под регулирующим действием соответствующих гормонов. При рассмотрении патофизиологии острого повреждния клетки следует отдельно остановиться на роли лизосомального аппарата. Существует много причин, приводящих к недостаточности функции лизо- - 23 -сом: угнетение ...

0 комментариев


Наверх