1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.
Из соотношения, связывающего параметры АРСС-модели с порядком авторегрессии p и скользящего среднего q:
Поскольку полагается, что u[k] - белый шум, то
,
, m>q
, m<0
В частном случае для авторегрессионных параметров, получаем :
,
, m=0
, m<0
В матричном виде эти соотношения выглядят следующим образом :
Таким образом, если задана автокорреляционная последовательность для , то АР-параметры можно найти в результате решения последнего матричного соотношения (называемого нормальными уравнениями Юла-Уалкера), где автокорреляционная матрица является и теплицевой, и эрмитовой.
Наиболее очевидным подходом к авторегрессионному оцениванию является решение нормальных уравнений Юла-Уалкера, в которые вместо значений неизвестной автокорреляционной функции подставляем их оценки. Результаты экспериментов с этим, первым методом АР-оценивания и сравнение с другими методами этого класса приведены в соответствующем разделе.
1.4.3. Методы оценивания коэффициентов отражения.
Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :
, где n=1,2,..p-1
Коэффициент отражения определяется по известным значениям автокорреляционной функции :
, где
Из всех величин только непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.
1.4.3.1. Геометрический алгоритм.
Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:
Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой и в рекурсивное соотношение для авторегрессионных параметров:
Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :
Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :
Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка
Окончательный вид выражений геометрического алгоритма :
, где n=1,2,..p-1
,
, где
... частотного диапазона и внешний вид фильтра. То же самое мы видим и для других Частотных диапазонов на плакатах 2 и 3 . Доклад окончен Тема: Модель тракта прослушивания гидроакустических сигналов ОглавлениеВведение Место тракта прослушивания в структуре режима ШП типовой ГАС Формирование канала наблюдения в частотной области 3 Факторы, влияющие на восстановление сигнала 3.1 Перекрытие входных ...
... ідеальних напруг приймальних каналів U, які вільні від ефекту взаємного впливу, вирішується система: , (27) де - вектор реальних напруг приймальних каналів, отриманих після аналого-цифрового перетворювача (АЦП) без проведення корекції. З метою компенсації взаємного впливу, розв’язання системи (12) здійснюється за методом найменших квадратів з мінімізацією функц ...
... на другом или утверждения о реализации идеи человеко-машинного общения. Поэтому исследования в этой области являются весьма актуальными. 3. Разработка программного обеспечения для распознавания команд управления промышленным роботом 3.1 Реализация интерфейса записи и воспроизведения звукового сигнала в операционной системе Microsoft Windows 3.1.1 Основные сведения Звуковые данные хранятся ...
... Кибернетики и Информатики Работа допущена к защите Зав. кафедрой д.т.н., проф. Семушин И.В. _____________________ _____________________ Дипломная работа Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами. Специальность: 01.02 – Прикладная математика. Проект выполнил студент гр. ПМ-52 _______________ Кудрявцев М.Ю. Руководитель: зав. кафедрой МКИ ...
0 комментариев