1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.

Из соотношения, связывающего параметры АРСС-модели с порядком авторегрессии p и скользящего среднего q:

Поскольку полагается, что u[k] - белый шум, то

,

, m>q

, m<0

В частном случае для авторегрессионных параметров, получаем :

,

, m=0

, m<0

В матричном виде эти соотношения выглядят следующим образом :

Таким образом, если задана автокорреляционная последовательность для , то АР-параметры можно найти в результате решения последнего матричного соотношения (называемого нормальными уравнениями Юла-Уалкера), где автокорреляционная матрица является и теплицевой, и эрмитовой.

Наиболее очевидным подходом к авторегрессионному оцениванию является решение нормальных уравнений Юла-Уалкера, в которые вместо значений неизвестной автокорреляционной функции подставляем их оценки. Результаты экспериментов с этим, первым методом АР-оценивания и сравнение с другими методами этого класса приведены в соответствующем разделе.

1.4.3. Методы оценивания коэффициентов отражения.

Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :

, где n=1,2,..p-1

Коэффициент отражения определяется по известным значениям автокорреляционной функции :

, где

Из всех величин только  непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.

1.4.3.1. Геометрический алгоритм.

Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:

 

Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой  и в рекурсивное соотношение для авторегрессионных параметров:

Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :

Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :

 

Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка

Окончательный вид выражений геометрического алгоритма :

, где n=1,2,..p-1

,  

, где


Информация о работе «Спектральный анализ и его приложения к обработке сигналов в реальном времени»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 56254
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
64253
0
44

... частотного диапазона и внешний вид фильтра. То же самое мы видим и для других Частотных диапазонов на плакатах 2 и 3 . Доклад окончен Тема: Модель тракта прослушивания гидроакустических сигналов ОглавлениеВведение Место тракта прослушивания в структуре режима ШП типовой ГАС Формирование канала наблюдения в частотной области 3 Факторы, влияющие на восстановление сигнала 3.1 Перекрытие входных ...

Скачать
81779
1
27

... ідеальних напруг приймальних каналів U, які вільні від ефекту взаємного впливу, вирішується система:  , (27) де  - вектор реальних напруг приймальних каналів, отриманих після аналого-цифрового перетворювача (АЦП) без проведення корекції. З метою компенсації взаємного впливу, розв’язання системи (12) здійснюється за методом найменших квадратів з мінімізацією функц ...

Скачать
158991
11
10

... на другом или утверждения о реализации идеи человеко-машинного общения. Поэтому исследования в этой области являются весьма актуальными. 3. Разработка программного обеспечения для распознавания команд управления промышленным роботом 3.1 Реализация интерфейса записи и воспроизведения звукового сигнала в операционной системе Microsoft Windows 3.1.1 Основные сведения Звуковые данные хранятся ...

Скачать
62527
1
375

... Кибернетики и Информатики Работа допущена к защите Зав. кафедрой д.т.н., проф. Семушин И.В. _____________________ _____________________ Дипломная работа Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами. Специальность: 01.02 – Прикладная математика. Проект выполнил студент гр. ПМ-52 _______________ Кудрявцев М.Ю. Руководитель: зав. кафедрой МКИ ...

0 комментариев


Наверх