2.5. Алгоритм построения многоканального сигнатурного анализатора.

Для заданных значений  и , где определяет достоверность диагностирования, алгоритм построения многоканального сигнатурного анализатора состоит из следующих этапов.

1. Вычисляются постоянные коэффициенты

где

2. Определяются коэффициенты  причём значения коэффициентов  вычисляются на основании соответствующей системы уравнений, а значения остальных коэффициентов определяются согласно выражению

3. Строится функциональная схема многоканального сигнатурного анализатора на основании полученной системы уравнений

При этом используются результаты этапов 1 и 2, позволяющих однозначно определить топологию связей многовходовых сумматоров по модулю два, на выходах которых формируются значения .

2.6. Применение многоканальных анализаторов для диагностики неисправностей.

С помощью многоканальных сигнатурных анализаторов можно существенно ускорить процедуру контроля цифровых схем, которая практически увеличивается в n раз, где n – количество входов применяемого анализатора. В случае совпадения реально полученной сигнатуры с её эталонным значением считается, что с достаточно высокой вероятностью проверяемая цифровая схема находится в исправном состоянии. На этом процедура её исследования оканчивается. В противном случае, когда схема содержит неисправности, реальная сигнатура, как правило, отличается от эталонной, что служит основным аргументом для принятия гипотезы о неисправном состоянии схемы. В тоже время вид полученной сигнатуры не несёт никакой дополнительной информации о характере возникшей неисправности. Более того, остаётся открытым вопрос о том, какие из n анализируемых последовательностей, инициирующих реальную сигнатуру, содержат ошибки, т.е. возникает задача локализации неисправности с точностью до последовательности, несущей информацию о её присутствии. Рассмотрим возможные варианты решения данной задачи для случая применения n – канальных анализаторов.

Предварительно докажем следующую теорему.

Теорема. Суммарная сигнатура S(x), полученная для последовательностей  на n – канальном сигнатурном анализаторе, равна поразрядной сумме по модулю два сигнатур , , причём каждая из сигнатур , формируется для последовательности  при условии, что .

Доказательство. В n – канальном анализаторе n входных последовательностей преобразуются в одну вида:

Такая входная последовательность, анализируемая n канальным сигнатурным анализатором, описывается следующим двоичным полиномом:

 , (2.6.1)

который состоит из суммы по модулю два полиномов вида:

 , (2.6.2)

описывающих выходные последовательности . Каждый полином  можно представить в виде соотношения:

 , (2.6.3)

где -полином, взаимно обратный полиному , используемому для реализации n – канального сигнатурного анализатора; - сигнатура последовательности .

Просуммировав по модулю два правые и левые части равенства (2.6.3), получим, что полином  будет определяться как

 (2.6.4)

для которого также справедливо соотношение , т.е.

 (2.6.5)

В результате сравнения двух последних равенств можно заключить, что суммарная сигнатура S(x), полученная для последовательностей  равна поразрядной сумме по модулю два сигнатур  каждой из входных последовательностей:

  (2.6.6)

что и требовалось доказать.

Основной результат данной теоремы, выраженный соотношением (2.6.5), справедлив для примитивного полинома  и произвольных значений n и l. Следствием этой теоремы является возможность определения эталонной сигнатуры для произвольного множества входных последовательностей. Так, эталонное значение сигнатуры для первой, второй и пятой последовательностей будет вычисляться как

 

Используя результаты теоремы, можно формализовать процедуру контроля цифровой схемы. При этом входными последовательностями  этого анализатора в общем случае могут быть последовательности, формируемые на входных, промежуточных и выходных полюсах схемы, для которых в результате предварительных исследований определены значения эталонных сигнатур . Не нарушая общности, предположим, что n=2d, и представим процедуру контроля в виде следующего алгоритма.

Алгоритм контроля цифровой схемы локализацией неисправности до первой последовательности, содержащей вызванные ею ошибки.

В результате анализа n=2d реальных последовательностей  на n – канальном анализаторе определяется значение сигнатуры S*(x), которое соответствует соотношению:

По выражению

 

вычисляется эталонное значение сигнатуры S(x).

Реальное значение сигнатуры S*(x) сравнивается с эталонной сигнатурой S(x). В случае выполнения равенства S*(x) и S(x) считается процедура диагностики оконченной. В противном случае, когда S*(x)¹S(x) выполняется следующий этап алгоритма.

Все множество входных последовательностей разбивается на две группы, причём номера последовательностей  составляют множество А1={1,2,3…n/2}, а номера последовательностей  составляют множество А2={n/2+1,n/2+2,…n}. Значению i присваивается значение 1.

В результате анализа реальных последовательностей, номера которых задаются множеством А1 на n – канальном сигнатурном анализаторе при условии, что последовательности, номера которых определяет множество А2, являются нулевыми, определяется значение реальной сигнатуры.

На основании выражения

 

определяем S(x).

Проверяется справедливость равенства S*(x)=S(x), в случае выполнения множество А1 заменяется элементами множества А2.

Значение переменной i увеличивается на 1 и сравнивается с величиной n, если i<n, то совершают вышеприведённые действия с элементами множества А2.

Единственный элемент множества А1 представляет собой номер ошибочной последовательности.

Процедура контроля цифровой схемы считается законченной.

2.7. Оценка достоверности многоканального сигнатурного анализатора.

Учитывая эквивалентность функционирования n - канального сигнатурного анализатора и соответствующего ему одноканального анализатора относительно результата сжатия n входных последовательностей  логично оценить достоверность МСА, используя результаты, полученные для одноканального сигнатурного анализатора. Действительно, в случае применения примитивного полинома вероятность необнаружения ошибок в последовательностях  многоканальным сигнатурным анализатором для  где m – старшая степень порождающего полинома, будет определяться соотношением:

Это соотношение справедливо для любого соотношения  и , произведение которых равно 2m-1.[6] Приведённая интегральная характеристика эффективности МСА, также как и характеристика одноканального сигнатурного анализатора, является достаточно приближённой оценкой, справедливой для общих допущений. Более полной характеристикой МСА будет распределение вероятностей  необнаружения возникшей ошибки кратности m в анализируемых последовательностях . При этом численное значение указанных вероятностей, как и в случае одноканального анализатора, определяется выражениями:

Попытка применить это выражение для оценки значений  при анализе последовательности , когда  на n – канальном анализаторе не всегда позволяет получить верные результаты.

Теорема. Множество ошибок последовательности  необнаруживаемых одноканальным СА, реализованном на основании примитивного полинома , старшая степень которого равна m, соответствует множеству необнаруживаемых ошибок n = 2d – канальным анализатором, (d – целое положительное число) при условии отсутствия ошибок в последовательностях .

Таким образом, достоверность многоканального сигнатурного анализатора может быть оценена либо интегральной величиной , либо распределением вероятностей  необнаружения m - кратной ошибки в анализируемых последовательностях . Более предпочтительным значением n является значение, удовлетворяющее требованию n = 2d. Анализ последовательности  для  на подобном анализаторе будет эквивалентен анализу на соответствующем одноканальном анализаторе.


Информация о работе «Цифровая обработка сигналов»
Раздел: Информатика, программирование
Количество знаков с пробелами: 37815
Количество таблиц: 9
Количество изображений: 6

Похожие работы

Скачать
74930
24
17

... Студент группы 220352 Чернышёв Д. А. Справка— отчет о патентном и научно- техническом исследовании Тема выпускной квалификационной работы: телевизионный приёмник с цифровой обработкой сигналов. Начало поиска 2. 02. 99. Окончание поиска 25.03.99 Предмет поиска Страна, Индекс (МКИ, НКИ) № ...

Скачать
22539
12
0

... 1 – «-» Причем 1-ый разряд слева – знаковый разряд. 16 14 12 10 8 6 4 2 Т 2Т 2. Связи между аналоговыми и дискретными сигналами. При обработке сигнала на ЭВМ необходимо в максимальной степени, чтобы дискретный или цифровой сигнал содержал все признаки аналогового сигнала. При дискретизации возможна потеря информации, которая ...

Скачать
69191
0
18

... примерно 6%. В общем, в районе 1 - 4 кГц чувствительность уха по всем параметрам максимальна, и составляет не так уж и много, если брать не логарифмированные значения, с которыми приходится работать цифровой технике. Примите на заметку - многое из того, что происходит в цифровой обработке звука, может выглядеть ужасно в цифрах, и при этом звучать неотличимо от оригинала. В цифровой обработке ...

Скачать
13573
1
14

... несущими и амплитудно-фазовая модуляция с одной боковой полосой (АФМ-ОБП). 3. Выбор длительности и количества элементарных сигналов, используемых для формирования выходного сигнала В реальных каналах связи для передачи сигналов по частотно ограниченному каналу используется сигнал вида , но он бесконечен во времени, поэтому его сглаживают по косинусоидальному закону. , где  - ...

0 комментариев


Наверх