Методы измерения импульсных свойств ферритовых изделий и способы их автоматизации

112726
знаков
9
таблиц
4
изображения

5.2.2 Методы измерения импульсных свойств ферритовых изделий и способы их автоматизации

 

Методы испытаний магнитомягких ферритов в импульсных полях определены ГОСТ 12635-67 "Методы испытаний в диапазоне частот от 10 кГц до 1 МГц" и ГОСТ 12636-67 "Методы испытаний в диапазоне частот от 1 до 200 МГц". При этом в диапазоне частот от 1 до 200 МГц измеряют, как правило, в слабых полях, следующие параметры: начальную магнитную проницаемость mн, тангенс угла диэлектрических потерь d, температурный коээффициент начальной магнитной проницаемости ТКm, а в диапазоне выше 200 МГц - параматры СВЧ, т.е. ширину резонансной кривой, напряженность резонансного поля.

Для измерения tgd и ТКm резонансным и индукционным методами используют различные стандартные приборы и установки: низкочастотный измеритель индуктивности ЭМ18-2 (с рабочей частотой до 10 кГц), установку для измерения индуктивности и сопротивления УИМ-1 (с диапазоном частот от 10 кГц до 1 МГц), установки для испытания магнитных материалов УИММ-2 и УИММ-3 (с диапазоном частот от 20 кГц до 1 МГц), измеритель добротности Е9-4 ( с диапазоном частот от 50 кГц до 35 МГц).

 Испытания на частотах свыше 200 МГц проводятся на ферритах, применеяемых для устройств СВЧ диапазона. Методы и аппаратура для испытания в СВЧ диапазоне отличается повышенной сложностью и трудны для упрощенного описания. Поэтому ограничимся лишь указанием нормативных документов, определяющих методики испытания образцов в СВЧ диапазоне: ГОСТ 12637-67 и нормаль НПО.707.006.

Рассмотренные выше методы измерения магнитных характеристик в постоянном и переменном магнитных полях имеют ряд общих недостатков:

 а) сложность и длительность измерений и вычислений;

 б) необходимость испытания образцов определенной формы и размеров и нанеснения многовитковых обмоток.

Объемы же производства и специфики использования изделий из магнитомягких ферритов требуют проведения массового контроля их магнитных параметров. Проведение такого контроля невозможно без применения автоматических средств измерения.

Рассмотрим кратко автоматические средства для измерения характеристик магнитомягких ферритов.

Для измерения магнитной проницаемости, потерь, температурной стабильности, коэрцитивной силы и остаточной индукции магнитомягких материалов применяются автоматические установки. В качестве намагничивающей и измерительной обмоток в этих установках служит раздвоенная игла, которая обеспечивает одновременно его намагничивание и снятие сигнала с выходной обмотки. Если при этом обеспечивается автоматическая подача образцов на измерительный столик, автоматическое опускание и подъем иглы, то такое устройство обеспечивает быстрый автоматический контроль параметров всех изготовляемых деталей. В таком устройстве величина измеряемого параметра не расчитывается, а выводится в необходимых единицах измерения на цифровой прибор с одновременной автоматической записью его на ленту печатающего устройства. Необходимые импульсные программы поступают автоматически с соответствующего блока.

ВЫВОДЫ

 

Ферриты и изделия из них начиная с момента их изобретения нашли наиболее широкое применение в радиоэлектронике и вычислительной технике среди других магнитомягких материалов. Кроме того, что ферритовые изделия в большинстве случаев могут эффективно заменить изделия из других материалов, они обладают рядом уникальных физико-химических, магнитных и электрических свойств, не присущих ни одному другому материалу.

Применение ферритовых изделий в вычислительной технике позволило значительно ускорить процесс вычислений благодаря возможности значительной миниатюризации запоминающих устройств и устройств переключения.

Несмотря на значительный прогресс в области производства интегральных схем высокой степени миниатюризации и связанное с этим некоторое падение интереса к ферритовым сердечникам как к устройствам памяти, изделия подобного рода все еще находят довольно широкое применение в устройствах управления различными процессами и контроля выпускаемых изделий в промышленности.

С другой стороны, прогресс в области производства интегральных схем и производство автоматов на их основе позволило значительно улучшить контроль качества при производстве ферритов, что в свою очередь позволило выпускать ферритовые изделия с более точными характеристиками.

Применение ферритовых сердечников в радиоэлектронной аппаратуре в качестве сердечников катушек и основ для магнитных головок воспроизводящей и записывающей аппаратуры на данный момент является наиболее обширным. По своим характеристикам ферритовые сердечники не имеют аналогов по соотношению цена/качество среди других материалов и применяются в очень широком диапазоне приборов: от любительской техники до высокоточных промышленных аппаратов.

литературA.

1. З.Фактор и др. Магнитомягкие материалы. М.: Энергия, 1964 — 312 с.

2. Э.А.Бабич и др. Технология производства ферритовых изделий. М.: Высшая школа, 1978, 1978 — 224 с.

3. В.А.Злобин и др. Ферритовые материалы. Л.: Энергия, 1970 --112 с.

4. В.В.Пасынков, В.С.Сорокин. Материалы электронной техники, М.: Высшая школа, 1986 — 367 с.

5. Ю.В.Корицкий и др. Справочник по электротехническим материалам. Т.3, Л.: Энергоатомиздат, 1988 — 728 с.


Информация о работе «Магнитомягкие материалы. Ферриты»
Раздел: Физика
Количество знаков с пробелами: 112726
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
21773
0
0

... и др. элементами; порошковые материалы, из которых постоянные магниты, получают прессованием порошков с последующей термообработкой; прочие магнитные материалы (например, сплавы на основе редкоземельных металлов, устаревшие материалы, пластически деформируемые сплавы, эластичные магниты и др.). По применению магнитотвердые материалы подразделяют на материалы, применяемые для изготовления ...

Скачать
51680
2
2

... по миру. Если в 1900 г. в год получали около 8 тысяч тонн легкого металла, то через сто лет объем его производства достиг 24 миллионов тонн. 2.         Металлические проводниковые и полупроводниковые материалы, магнитные материалы   2.1 Классификация электротехнических материалов Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и ...

Скачать
26294
1
3

... 3.1. Общие сведения. К магнитотвердым материалам относятся магнитные материалы с широкой петлей гистерезиса и большой коэрцитивной силой Нс (рис. 1.3, г). Основными характеристиками магнитотвердых материалов являются коэрцитивная сила Нс, остаточная индукция Вс, максимальная удельная магнитная энергия, отдаваемая во внешнее пространство wмах. Магнитная проницаемость m магнитотвердых материалов ...

Скачать
20300
0
0

... . К таким диэлектрикам относятся целлюлоза и продукты ее переработки, полярные полимеры. Дипольно-релаксационная поляризация наблюдается также у льда. Диэлектрическая проницаемость указанных материалов в большой степени зависит от температуры и от частоты приложенного напряжения, подчиняясь тем же закономерностям, какие наблюдаются для полярных жидкостей. Можно отметить, что диэлектрическая ...

0 комментариев


Наверх