Магнитные материалы специализированного назначения

112726
знаков
9
таблиц
4
изображения

2.4. Магнитные материалы специализированного назначения

 

Ферриты и металлические сплавы с ППГ. Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.

Двоичные элементы на магнитных сердечниках с ППГ характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, относительной стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания.

К материалам и изделиям этого типа предъявляют ряд специфических требований, а для их характеристики привлекают некоторые дополнительные параметры. Основным из таких параметров является коэффициент прямоугольности петли гистерезиса Кпу, представляющий собой отношение остаточной индукции Вr к максимальной индукции Вmax:

Кпу = Вrmax

Для определенности Вmax измеряют при Hmax = 5Hc. Желательно, чтобы Кпу был возможно ближе к единице. Для обеспечения быстрого перемагничивания сердечников они должны иметь небольшой коэффициент переключения Sq, численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противоположное состояние максимальной индукции.

Кроме того, материалы с ППГ должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а следовательно, иметь высокую температуру Кюри и некоторые другие свойства.

Ферриты с ППГ в практике распространены шире, чем металлические тонкие ленты. Это объясняется тем, что технология изготовления сердечников наиболее проста и экономична. Свойства ферритовых сердечников приведены в табл.2.

Материал или сердечник

Hc,

A/м

Br,

Тл

Кпу,

(не менее)

Sq,

мкКл/м

Тк, °С

Примечание
Ферриты различных марок 10-1200 0,15-0,25 0,9 25-55 110-630 Имеется свыше 25 различных марок
Микронные сердечники из пермаллоев (толщины ленты от 2 до 10 мкм) 8-50 0,6-1,5 0,85-0,9 25-100 300-630 Сплавы 50НП, 65Н, 79НМ, 34НКПМ

Табл.3 Свойства сердечников и материалов с ППГ.

Ферритам свойственна спонтанная прямоугольность петли гистерезиса, т.е. специфическая форма петли реализуется при выборе определенного химического состава и условий спекания феррита, а не является результатом какой-либо специальной обработки материала, приводящей к образованию текстуры (например, механических воздействий или обработки в сильном магнитном поле).

Из ферритов с ППГ наиболее широкое применение находят магний-марганцевые и литиевые феррошпинели. Установлено, что прямокгольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микронеоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междуузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Mn3+, образующихся при определенных условиях синтеза.

При использовании ферритов следует учитывать изменение их свойств от температуры. Так, при возрастании температуры от -20 до +60°С у ферритов различных марок коэрцитивная сила уменьшается в 1,5-2 раза, остаточная индукция - на 15-30%, коэффициент прямоугольности - на 5-35%.

В зависимости от особенности устройств, в которых применяются ферриты с ППГ, требования, предъявляемые к ним, могут существенно различаться. Так, ферриты, предназначенные для коммутационных и логических элемнтов схем автоматического управления, должны иметь малую коэрцитивную силу (10-20 А/м). Наоборот, материалы, используемые в устройствах хранения дискретной информвции, должны иметь повышенное значение коэрцитивной силы (100-300 А/м).

В запоминающих устройствах ЭВМ применяют либо кольцевые ферритовые сердечники малого размера (имеются сердечники с наружным диаметром 0,3-0,4 мм), либо многоотверстные ферритовые платы в которых область вокруг каждого отверстия выполняет функции отдельного сердечника. При использовании сердечников достигается более высокое быстродействие, однако возникают технологические трудности при прошивке таких сердечников проводниками и сборке матриц.

Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1м до 1мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ, необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать полоскость поляризации волны, частично или полностью поглощать мощность потока.

Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для напрвления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые немагнитные активные диэлектрики. Магнитными характеристиками первых можно управлять с помощью внешнего магнитного поля, электрическими свойствами вторых - за счет внешнего электрического поля.

Практическое применение ферритов СВЧ основано на: а) магнитооптическом эффекте Фарадея; б) эффекте ферромагнитного резонанса; в) изменении внешним магнитным полем значения магнитной проницаемости феррита.

Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в намагниченном за счет внешнего поля феррите. При этом могут быть получены различные углы поворота плоскости поляризации, а следовательно, и коммутирование энергии в разные каналы.

Ферромагнитный резонанс наблюдается при совпадении частоты внешнего возбуждающего поля с собственной частотой прецессии спинов электронов. Собственная частота прецессии зависит от магнитного состояния образца, а потому ее можно изменять с помощью постоянного подмагничивающего (управляющего) поля Н_. При резонансе резко возрастает поглощение энергии электромагнитной волны, распространяющейся в волноводе в обратном направлении; для волны прямого направления поглощение оказывается значительно меньшим. В результате получается высокочастотный вентиль. Рассмотренный эффект наиболее сильно проявляется в том случае, когда напряженности переменного возбуждающего поля и постоянного подмагничивающего полей взаимно перпендикулярны.

Если частоту внешнего поля поддерживать постоянной, а изменять напряженность подмагничивающего поля Н_, то вентильные свойства феррита будут проявляться в довольно узком интервале напряженностей постоянного поля DН_, называемом шириной линии ферромагнитного резонанса. Чем меньше значение DН_, тем сильнее поглощение электромагнитной энергии, что благоприятно сказывается на характеристиках ряда СВЧ-устройств (антенные переключатели и циркуляторы, служащие для распределения энергии между отдельными волноводами; фазовращатели; фильтры; модуляторы; ограничители мощности и др.).

Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются:

 1) высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем);

 2) высокое удельное объемное сопротивление (106-108 Ом·м) и возможно меньший тангенс угла диэлектрических потерь (10-3 - 10-4), а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите;

 3) температурная стабильность свойств и возможно более высокое значение точки Кюри. В отдельных случаях к ферриту предъявляют и другие требования, которые могут быть даже противоречивыми. Большинство требований удовлетворяется при использовании магний-марганцевых ферритов с большим содержанием окиси магния.

Для некоторых целей применяют литий-цинковые и никель-цинковые ферриты и ферриты сложного состава (полиферриты).

Конфигурация и размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а с другой, зависят от свойств самого материала. В различных приборах СВЧ применяемые ферритовые вкладыши имеют форму прямоугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспечивается наилучшее согласование его с волноводом, т.е. получается минимальное отражение электромагнитной волны от феррита. Для изготовления вкладышей используются как поликристаллические материалы, так и монокристаллы ферритов. Последние характеризуются более узкой шириной линии ферромагнитного резонанса.

Магнитострикционные ферриты. Магнитострикционными называют магнитные материалы, применение которых основано на явлении магнитострикции и магнитоупругом эффекте, т.е. изменении размеров тела в магнитном поле и изменении магнитных свойств материала под влиянием механических воздействий.

Среди магнитострикциооных материалов можно отметить как чистые металлы, так сплавы и различные ферриты. Ферриты являются магнитострикционными материалами для высоких частот.

В эксплуатационных условиях в большинстве случаев магнитное состояние сердечника магнитострикционного преобразователя определяется одновременным воздействием переменного и постоянного подмагнич,вающих полей. Если Выполняется соотношение Bm << B_, то между амплитудами переменного магнитного поля и механических колебаний существует линейная зависимость. Таким образом, магнитострикционные колебания небольшой амплитуды в намагниченной (магнитно-поляризованной) среде по своему внешнему проявлению аналогичны пьезоэлектрическим. Поэтому их иногда называют пьезомагнитными.

Широкое применение в магнитострикционных устройствах находит ферритовая керамика. По сравнению с никелем и металлическими сплавами, магнитострикционные свойства которых также выражены довольно сильно, магнитострикционные ферриты имеют ряд преимуществ. Благодаря высокому удельному сопротивлению в них пренебрежимо малы потери на вихревые токи, поэтому отпадает необходимость расслаивать материал на отдельные пластины. В отличие от металлических сплавов ферриты не подвержены действию химически агрессивных сред. С помощью керамической технологии можно изготовить преобразователи практически любых форм и размеров.

По составу магнитострикционная керамика представляет собой либо чистый феррит никеля (NiFe2O4), либо твердые растворы на его основе.

Из магнитострикционных материалов изготавливают сердечники электромеханических преобразователей (излучателей и приемников) для электроакустики и ультразвуковой техники, сердечники электромеханических и магнитострикционных фильтров и резонаторов, линий задержки. Их используют также в качестве чувствительных элементов магнитоупругих преобразователей, применяемых в устройствах автоматики и измерительной техники.


Информация о работе «Магнитомягкие материалы. Ферриты»
Раздел: Физика
Количество знаков с пробелами: 112726
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
21773
0
0

... и др. элементами; порошковые материалы, из которых постоянные магниты, получают прессованием порошков с последующей термообработкой; прочие магнитные материалы (например, сплавы на основе редкоземельных металлов, устаревшие материалы, пластически деформируемые сплавы, эластичные магниты и др.). По применению магнитотвердые материалы подразделяют на материалы, применяемые для изготовления ...

Скачать
51680
2
2

... по миру. Если в 1900 г. в год получали около 8 тысяч тонн легкого металла, то через сто лет объем его производства достиг 24 миллионов тонн. 2.         Металлические проводниковые и полупроводниковые материалы, магнитные материалы   2.1 Классификация электротехнических материалов Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и ...

Скачать
26294
1
3

... 3.1. Общие сведения. К магнитотвердым материалам относятся магнитные материалы с широкой петлей гистерезиса и большой коэрцитивной силой Нс (рис. 1.3, г). Основными характеристиками магнитотвердых материалов являются коэрцитивная сила Нс, остаточная индукция Вс, максимальная удельная магнитная энергия, отдаваемая во внешнее пространство wмах. Магнитная проницаемость m магнитотвердых материалов ...

Скачать
20300
0
0

... . К таким диэлектрикам относятся целлюлоза и продукты ее переработки, полярные полимеры. Дипольно-релаксационная поляризация наблюдается также у льда. Диэлектрическая проницаемость указанных материалов в большой степени зависит от температуры и от частоты приложенного напряжения, подчиняясь тем же закономерностям, какие наблюдаются для полярных жидкостей. Можно отметить, что диэлектрическая ...

0 комментариев


Наверх