А. Т. Бизин
Сибирская Государственная Академия телекоммуникаций и информатики
Новосибирск 1998 г.
Дискретизация непрерывных сигналов
Обработка сигналов на цифровых ЭВМ начинается с замены непрерывного сигнала X(t) на дискретную последовательность, для которой применяются такие обозначения
x(nT) , x(n) , xn , {x0 ; x1 ; x2 ; … } .
Дискретизация осуществляется электронным ключом (ЭК) через равные интервалы времени T (Рис. 1.1).
Дискретная последовательность аппроксимирует исходный сигнал X(t) в виде решетчатой функции X(nT). Частота переключения электронного ключа fд и шаг дискретизации T связаны формулой
fд = 1 / T . (1.1)
Дискретная последовательность или дискретный сигнал выражается через исходный непрерывный (аналоговый) сигнал следующим образом
x(nT) = x(t)d(t - nT) , (1.2)
где d(t) - дискретная d - функция (Рис. 1.2, а),
d(t - nT) - последовательность d - функций (Рис. 1.2, б).
Погрешность, возникающую при замене аналогового сигнала дискретным сигналом, удобно оценить сравнивая спектры этих сигналов.
Связь спектров дискретного и непрерывного сигналов.
Исходное выражение для спектра дискретного сигнала с учетом (1.2) запишется следующим образом
X(jw) =x(nT) e-jwt dt =x(t)d(t - nT) e-jwt dt .
Периодическую последовательность d - функций здесь можно разложить в ряд Фурье
d(t - nT) =,
где с учетом формулы связи спектров периодического и непериодического сигналов
, поскольку Fd(jw) = 1
После замены в исходном выражении периодической последовательности d - функций ее разложением в ряд Фурье получим
X(jw) =x(t)() e-jwt dt =x(t)e-jwt dt .
Учитывая здесь теорему смещения спектров, т.е. :
если f(t) ® F(jw), то f(t)® F[j(w ± w0)] ,
последнее равенство можно представить в виде формулы, выражающей связь спектров дискретного X(jw) и аналогового Xa(jw) сигналов
X(jw) =Xa[j(w -)] . (1.3)
На основании формулы (1.3) с учетом поясняющих рисунков 1.3, а, б можно сделать следующие выводы :
Спектр дискретного сигнала состоит из суммы спектров исходного непрерывного сигнала, сдвинутых друг относительно друга по оси частот на величину равную частоте дискретизации wд
Спектры аналогового и дискретного сигналов совпадают в диапазоне частот [-0,5wд ; 0,5wд], если удовлетворяется неравенство
wв Ј 0,5wд , (1.4)
где wв - верхняя частота спектра аналогового сигнала.
Равенство в (1.4) соответствует утверждению теоремы Котельникова о минимальной частоте wд.
Смежные спектры Xa(jw) в (1.3) частично перекрываются, если условие (1.4) не выполняется (Рис 1.3, б). В этом случае спектр дискретного сигнала искажается по отношению к спектру аналогового сигнала. Эти искажения являются неустранимыми и называются ошибками наложения.
Аналоговый сигнал можно восстановить полностью по дискретному сигналу с помощью ФНЧ, частота среза которого wс = 0,5wд. Это утверждение основано но совпадении спектров дискретного сигнала на выходе ФНЧ и непрерывного сигнала. Сигнал восстанавливается без искажений, если выполняется условие (1.4). в противном случае сигнал восстанавливается с искажениями, обусловленными ошибками наложения.
Выбор частоты дискретизации осуществляется в соответствии с (1.4). если частота wв не известна, то выбор из wд определяется расчетом по формуле (1.1), в которой интервал T выбирается приближенно с таким расчетом, чтобы аналоговый сигнал восстанавливался без заметных искажений плавным соединением отсчетов дискретного сигнала.
Преобразование Фурье и Лапласа для дискретных сигналов.
Для дискретных сигналов формулы Фурье и Лапласа представляется возможным упростить. Действительно, поскольку
то после перехода к дискретной переменной пара преобразований Фурье принимает вид
Здесь применяются формулы одностороннего преобразования Фурье, так как начало отсчета совмещается с началом действия дискретного сигнала.
Формулы Фурье для дискретных сигналов применяются в нормированном виде, поэтому после замены X(nT) ® X(nT) / T преобразование Фурье принимает окончательный вид
(1.5)
Формулы Лапласа для дискретных сигналов получаются на основании (1.5) после обобщения частоты на всю плоскость комплексного переменного, то есть jw ® P = d + jw
(1.6)
Z - преобразование.
Эффективность частотного анализа дискретных сигналов существенно возрастает, если заменить преобразование Лапласа Z - преобразованием. В этом случае изображение сигнала X(p), которое представляет собой трансцендентную функцию переменной P = d + jw, заменяется Z - изображением сигнала X(Z), которое является рациональной функцией переменной Z = x + jy.
Формулы Z - преобразования получаются из формулы Лапласа (1.6) заменой переменных
epT = Z . (1.7)
Подстановка (1.7) и ее производной
dZ / dp = TepT
в (1.6) приводит к формулам прямого и обратного Z - преобразования
(1.8)
Точки на мнимой оси комплексного переменного p = d +jw, то есть точки p = jw, определяют реально частотные характеристики сигнала. Мнимой оси соответствует на плоскости Z единичная окружность, так как в этом случае согласно (1.7)
Z = ejwT = (1.9)
Поэтому непрерывному росту переменной на мнимой оси плоскости p = d + jw, соответствует многократный обход единичной окружности на плоскости z = x + jy (Рис. 1.4). Этим фактом объясняется, в частности, то обстоятельство, что интегрирование в формуле обратного z - преобразования (1.8) осуществляется вдоль единичной окружности плоскости z взамен интегрирования вдоль прямой параллельной мнимой плоскости p.
Учитывая вышеизложенное и формулы (1.7), (1.9) можно утверждать, что левая полуплоскость переменного p = d + jw отображается на плоскость единичного круга переменного z = x + jy, правая полуплоскость - на плоскость z за пределами единичного круга.
Подстановка (1.9) в z - изображение сигнала приводит к спектру этого сигнала, подстановка (1.7) дает изображение по Лапласу.
Пример. Определить спектр и построить графики модуля и аргумента спектральной плотности сигнала x(nT) = {a ; b} (Рис. 1.5, а).
Решение.
Z - изображение сигнала согласно (1.8)
X(Z) =x(nT) Z-n = x(0T) Z-0 + x(1T) Z-1 = a + bZ-1
Отсюда подстановкой (1.9) определяем спектр сигнала
X(jw) = a + be-jwT.
Графики модуля и аргумента спектральной плотности приведены на рисунке 1.6, а, б на интервале частот [0 ; wд].
Вне интервала частот [0 ; wд] частотные зависимости повторяются с периодом wд.
Основные теоремы Z - преобразования.
Перечислим без доказательства теоремы z - преобразования, которые потребуются в последующих разделах.
... для выявления нестационарных составляющих сигнала, что крайне полезно при подборе способов фильтрования сигнала с помощью структурной индексации. В результате построения подсистемы вейвлет-анализа система многомасштабного анализа дискретных сигналов (МАДС) дополнит свои функциональные возможности способностью выделения из исходного сигнала наиболее четких его составляющих, что должно быть учтено ...
... сигналов. При этом необходимо на блоке отсчетов определять оптимальный порядок предсказателя и коэффициенты предсказания . Адаптация предсказателя может осуществляться по входному или выходному сигналу. Структурная схема системы АРИКМ с адаптивным предсказанием изображена на рисунке (рисунок 9). При адаптации по входу для восстановления сигнала в приемнике необходимо передавать , и . Пусть ...
... количества байтов данных и данные для записи в регистры. Поле данных может не существовать (иметь нулевую длину) в определенных типах сообщений. В MODBUS – сетях используются два метода контроля ошибок передачи. Содержание поля контрольной суммы зависит от выбранного способа передачи. ASCII Когда используется ASCII-режим поле контрольной суммы содержит два ASCII-символа. Контрольная сумма ...
... кодовыми словами конечной размерности (ошибки квантования). Поэтому сигнал на выходе цифровой цепи отличается от идеального варианта на величину погрешности квантования. Цифровая техника позволяет получить высокое качество обработки сигналов несмотря на ошибки квантования: ошибки (шумы) квантования можно привести в норму увеличением разрядности кодовых слов. Рациональные способы конструирования ...
0 комментариев