Курсовая работа студентки 3 курса Громовой Марии Михайловны
Белорусский государственный университет
Факультет прикладной математики и информатики
Кафедра математической физики
Минск 2003
Введение
Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.
Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.
Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.
Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.
При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.
В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Morlet назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.
Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.
1. Многомасштабный анализ и вейвлеты
Определение 1. Многомасштабный анализ (multiresolutional analysis) – разложение гильбертова пространства L2(Rd), d³1, в последовательность замкнутых подпространств
, (1.1)
обладающих следующими свойствами:
1. , и полно в L2(Rd),
2. Для любого fÎ L2(Rd), для любого jÎ Z, f(x)ÎVj тогда и только тогда, когда
f(2x) ÎVj-1,
3. Для любого fÎ L2(Rd), для любого kÎ Zd, f(x)ÎV0 тогда и только тогда, когда f(x-k)ÎV0,
4. Существует масштабирующая (scaling) функция jÎV0, что {j(x-k)}kÎZd образует
базис Ритца в V0.
Для ортонормальных базисов можно переписать свойство 4 в виде:
4’. Существует масштабирующая функция jÎV0, что {j(x-k)}kÎZd образует ортонормальный базис в V0.
Определим подпространство Wj как ортогональное дополнение к Vj в Vj-1,
, (1.2)
и представим пространство L2(Rd) в виде прямой суммы
(1.3)
Выбирая масштаб n, можем заменить последовательность (1.1) следующей последовательностью:
(1.4)
и получить
(1.5)
Если имеем конечное число масштабов, то, не нарушая общности, можно положить j=0 и рассматривать
, V0Î L2(Rd) (1.6)
вместо (1.4). В числовой реализации подпространство V0 конечномерно.
Функция j - так называемая масштабирующая (скейлинг-) функция. С ее помощью можно определить функцию y - вейвлет - такую, что набор {y(x-k)}kÎZ образует ортонормальный базис в W0. Тогда
, m=0..M-1. (1.7)
Из свойства 4’ непосредственно следует, что, во-первых, функция j может быть представлена в виде линейной комбинации базисных функций пространства V-1 . Так как функции {jj,k(x)=2-j/2j(2-jx-k)}kÎZ образуют ортонормальный базис в Vj, то имеем
. (1.8)
Вообще говоря, сумма в выражении (1.8) не обязана быть конечной. Можно переписать (1.8) в виде
, (1.9)
где
, (1.10)
а 2p-периодическая функция m0 определяется следующим образом:
. (1.11)
Во-вторых, ортогональность {j(x-k)}kÎZ подразумевает, что
(1.12)
и значит
(1.13)
и . (1.14)
Используя (1.9), получаем
(1.15)
и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем
. (1.16)
Используя 2p-периодичность функции m0 и (1.14), после замены x/2 на x, получаем необходимое условие
(1.17)
для коэффициентов hk в (1.11). Заметив, что
(1.18)
и определив функцию y следующим образом:
, (1.19)
где
, k=0,…,L-1 , (1.20)
или преобразование Фурье для y
, (1.21)
где
, (1.22)
можно показать, что при каждом фиксированном масштабе jÎZ вейвлеты
{yj,k(x)=2-j/2y(2-jx-k)}kÎZ образуют ортонормальный базис пространства Wj.
Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, где и . Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.
Выбранный фильтр Н полностью определяет функции j и y и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций j и y почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связаные с j и y.
... базисе непосредственно влияет на скорость вычислительных алгоритмов. Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений: (4.1) (4.2) (4.3) 4.1 Оператор d/dx в вейвлетном базисе Нестандартные формы некоторых часто используемых ...
... ів у буферний ЗП контролера клавіатури та дисплея. Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ. 3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси ...
0 комментариев