Курсовая работа студентки 3 курса Громовой Марии Михайловны

Белорусский государственный университет

Факультет прикладной математики и информатики

Кафедра математической физики

Минск 2003

Введение

Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.

Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.

Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.

Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.

При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.

В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Morlet назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.

Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.

1. Многомасштабный анализ и вейвлеты

Определение 1. Многомасштабный анализ (multiresolutional analysis) – разложение гильбертова пространства L2(Rd), d³1, в последовательность замкнутых подпространств

  ,  (1.1)

обладающих следующими свойствами:

1. , и  полно в L2(Rd),  

2. Для любого fÎ L2(Rd), для любого jÎ Z, f(x)ÎVj тогда и только тогда, когда

f(2x) ÎVj-1,

3. Для любого fÎ L2(Rd), для любого kÎ Zd, f(x)ÎV0 тогда и только тогда, когда f(x-k)ÎV0,

4. Существует масштабирующая (scaling) функция jÎV0, что {j(x-k)}kÎZd образует 

базис Ритца в V0.

Для ортонормальных базисов можно переписать свойство 4 в виде:

4’. Существует масштабирующая функция jÎV0, что {j(x-k)}kÎZd образует ортонормальный базис в V0.

Определим подпространство Wj как ортогональное дополнение к Vj в Vj-1,

   ,   (1.2)

и представим пространство L2(Rd) в виде прямой суммы

     (1.3)

Выбирая масштаб n, можем заменить последовательность (1.1) следующей последовательностью:

    (1.4)

и получить

     (1.5)

Если имеем конечное число масштабов, то, не нарушая общности, можно положить j=0 и рассматривать

  , V0Î L2(Rd)  (1.6)

вместо (1.4). В числовой реализации подпространство V0 конечномерно.

Функция j - так называемая масштабирующая (скейлинг-) функция. С ее помощью можно определить функцию y - вейвлет - такую, что набор {y(x-k)}kÎZ образует ортонормальный базис в W0. Тогда

   , m=0..M-1.  (1.7)

Из свойства 4’ непосредственно следует, что, во-первых, функция j может быть представлена в виде линейной комбинации базисных функций пространства V-1 . Так как функции {jj,k(x)=2-j/2j(2-jx-k)}kÎZ образуют ортонормальный базис в Vj, то имеем

   .  (1.8)

Вообще говоря, сумма в выражении (1.8) не обязана быть конечной. Можно переписать (1.8) в виде

   ,  (1.9)

где

   ,  (1.10)

а 2p-периодическая функция m0 определяется следующим образом:

   .  (1.11)

Во-вторых, ортогональность {j(x-k)}kÎZ подразумевает, что

   (1.12)

и значит

    (1.13)

и   .   (1.14)

Используя (1.9), получаем

    (1.15)

и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем

 . (1.16)

Используя 2p-периодичность функции m0 и (1.14), после замены x/2 на x, получаем необходимое условие

     (1.17)

для коэффициентов hk в (1.11). Заметив, что

     (1.18)

и определив функцию y следующим образом:

  ,  (1.19)

где

  , k=0,…,L-1 ,  (1.20)

или преобразование Фурье для y

  ,   (1.21)

где

   ,   (1.22)

можно показать, что при каждом фиксированном масштабе jÎZ вейвлеты

{yj,k(x)=2-j/2y(2-jx-k)}kÎZ образуют ортонормальный базис пространства Wj.

Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, где  и . Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.

Выбранный фильтр Н полностью определяет функции j и y и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций j и y почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связаные с j и y.


Информация о работе «Матричные операции в вейвлетном базисе»
Раздел: Математика
Количество знаков с пробелами: 18505
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
17880
4
0

... базисе непосредственно влияет на скорость вычислительных алгоритмов. Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений: (4.1) (4.2)    (4.3) 4.1 Оператор d/dx в вейвлетном базисе Нестандартные формы некоторых часто используемых ...

Скачать
67501
0
36

... ів у буферний ЗП контролера клавіатури та дисплея. Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ. 3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ   Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси ...

0 комментариев


Наверх