Определять основные характеристики и услуги, обеспечиваемые IEEE 802.5;

Технологии создания сетей
Этот вопрос поставлен для того, чтобы вызвать дискуссию о достоинствах Лучшим решением является вариант B (спутниковая связь). Ниже даны Звонок, который вы слышите после набора номера, является "виртуальным" FDDI обладает значительной гибкостью, образует идеальную основу для Как было указано в главе 15 связь по протоколу SDLC строится в соответствии В мобильных сетях применяются радио и инфра-красная технология передачи ЭВМ А, выполняя работу в интересах более высокого уровня, связывается с Различать аналоговые и цифровые данные; Определять основные методы кодирования и их ключевые характеристики для Давать определение модема и указывать причины его использования; Министр Связи Адравы, страны с неровным ландшафтом и малой плотностью Если бы вы разрабатывали сеть, к которой предьявлялось бы требование Определять компоненты коммутируемой телефонной сети и их роль в Когда на целевом телефонном аппарате "снимается трубка", целевая СО Обоих DTE соединить между собой, то данные одного DTE будут передаваться Определять ключевые характеристики стандартов серии IEEE 802; И 802.5, и кроме этого, стандартные рекомендации по установке и Base 5 Определять основные характеристики и услуги, обеспечиваемые IEEE 802.5; Метров). Активные концентраторы могут подключаться к другим Устройств Битовых словах Конкретная ЭВМ в рамках конкретной сети адресуется аналогичным Сравнивать метод иерархического построения сетей SNA с построением Может обрабатывать множество одновременных и параллельных сеансов. В
591939
знаков
0
таблиц
0
изображений

1. Определять основные характеристики и услуги, обеспечиваемые IEEE 802.5;

2. Определять поля кадра IEEE 802.5 и их функции.

[1]Введение

[5]В данном разделе описывается стандарт IEEE 805.5 для маркерного кольца. В

стандарте 802.5 специфицируется только подуровень доступа к среде передачи

данных (MAC), имеющей кольцевую топологию. Стандарты IEEE 802.5 и IEEE 802.3

занимают одинаковое положение в рамках Эталонной Модели OSI.

[КС 19-1]

[ IEEE 802.5 и Модель OSI ]

[Модель] [Модель] [ Стандарты ]

[OSI ] [IEEE 802] [ IEEE 802 ]

[Уровни]

[ 4 - 7]

[Сетевой] [ 802.1 Интерсети, обзор, управление]

[Канальный] [Управление] [ 802.2 ]

[Логическим]

[каналом ]

[Доступ к ] [MAC] [MAC] [MAC]

[среде передачи]

[данных]

[Физический][Физический] [CSMA/CD] [Маркерная][Маркерное]

[шина ][кольцо ]

 [Другие стандарты ]

[ 802 ]

[ к рис. на стр. 19-2 (в поле рисунка)]

[1] Обзор стандарта IEEE 802.5

[5]Стандарт IEEE 802.5 описывает кольцевую сеть с маркерным методом доступа,

построенную по результатам обобщения исследований и промышленного освоения

кольцевых сетей фирмы IBM, которые продолжают развиваться, и предлагаются

фирмой IBM в качестве технологии построения сетей ЭВМ. Стандарт IEEE 802.5

незначительно отличается от маркерного кольца фирмы IBM, развитие обеих

спецификаций проистекает параллельно, поскольку стандарт IEEE 802.5 постоянно

пополняется большинством свойств, добавляемых фирмой IBM в маркерные кольцевые

сети.

Стандарт IEEE 802.5 имеет две части: стандарты реализации Физического уровня

Модели OSI и стандарты, специфицирующие подуровень MAC Канального уровня

Модели OSI.

[КС 19-2]

[ IEEE 802.5/Маркерное кольцо IBM ]

[ Конструктивные характеристики ]

[ IEEE 802.5 ] [ Маркерное кольцо IBM ]

[ Метод доступа ] [ Передача маркера ] [ Передача маркера ]

[ Топология ] [ Не специфицируется][ Звезда ]

[Метод передачи сигнала][Широкополосный (Baseband)][Широкополосный (Baseband)]

[Метод кодирования][Дифференциальный Манчестер][Дифференциальный Манчестер]

[Скорость передачи данных] [ 1, 4 Мбит/сек] [ 4, 16 Мбит/сек]

[Число станций в сегменте] [250] [260 (экранированная витая пара)]

[72 (неэкранированная витая пара)]

[ Среда ] [ Не специфицирована ] [ Витая пара ]

[ к рис. на стр. 19-3 (в поле рисунка)]

[1]IEEE 802.5 Конструктивные характеристики и ограничения

[5]Хотя в стандарте IEEE 802.5 не специфицируются многие физические

ограничения, тем не менее в нем приводится пример кольца, обьединяющего до

250 станций с помощью экранированной витой пары. Специфицированны также

скорости передачи данных 1 или 4 Мбит/сек при использовании метода кодирования

дифференциальный Манчестер. Для маркерного кольца IBM специфицированы скорости

4 или 16 Мбит/сек. в стандарте IEEE 802.5 не специфицируется топология сети,

но при этом и не исключается возможность использования звездообразной

топологии, подразумевающей наличие коммутационной проводной панели

(проводного центра). Коммутационная проводная панель, называемая устройством

множественного доступа станций (в терминологии IBM - MSAU - MultiStation

Access Unit), оснащается специальным реле, обеспечивающим шунтирование

отсутствующих в сети станций. Устройство MSAU более подробно рассмотрено

ниже.

Каждая станция в кольце работает подобно однонаправленному повторителю.

Каждая станция принимает серию битов от предыдущей станции. Затем станция

выполняет ретрансмиссию каждого бита в направлении следующей станции.

Станции назначения копируют принимаемые биты в собственной памяти прежде,

чем выполнить их ретрансмиссию.

[КС 19-3]

[ Передача маркера ]

[ маркер ]

[ кадр ]

[ кадр ]

[ маркер ]

[ к рис. на стр. 19-4 ( в поле рисунка)]

[1]IEEE 802.5 Методы доступа

[5]Методом доступа к среде передачи данных, специфицированным в стандарте

IEEE 802.5, является метод передачи маркера. В кольце циркулирует только

один маркер, обладание которым позволяет станции выполнить передачу данных.

Как показано на рисунке, когда станция получает маркер (1), она передает

кадр данных следующей станции (2). Когда передаваемый кадр (все его биты)

достигнут станции-источника (3), он изымается из кольца. Для проверки

возможной ошибки передачи кадра станция-источник сравнивает принятый кадр с

копией переданного кадра. Они должны совпасть. После завершения приема кадра

станция-источник формирует новый маркер и передает его следующей станции (4).

Если в кольце поддерживается режим "скорейшего освобождения маркера" (early

token release), то процедура выдачи нового маркера в кольцо может

выполняться сразу же после передачи последнего бита кадра данных.

Одна станция в кольце работает как активный монитор. Это устройство

обеспечивает жизнедеятельность кольца, удаляет "зациклившиеся" кадры,

синхронизирует устройства, подключенные к кольцу, восстанавливает утерянный

маркер, выполняет ряд других функций. В принципе, любая станция в кольце

может играть роль активного монитора. При исчезновении активного монитора

на кольце запускается процедура, позволяющая выбрать станцию, для исполнения

роли активного монитора.

[КС 19-4]

[ Маркерное кольцо IBM ]

[ Компоненты доступа к среде ]

[ Перемычка ]

[ Кабель-] [ Кабель-]

[ Отвод ] [ Отвод ]

[ Станция ] [ Станция ]

[ к рис. на стр. 19-5 (в поле рисунка)]

[1]Компоненты метода доступа маркерного кольца IBM

[5]В маркерном кольце фирмы IBM для физической коммутации станций применяется

звездообразный коммутационный центр, состоящий из коммутационных панелей

(MSAU). Станции непосредственно подключаются к коммутационому центру.

Компоненты доступа к среде представлены на рисунке. Панель коммутационного

центра оснащена реле для шунтирования неактивных станций кольца. Применение

реле увеличивает надежность кольца и упрощает технологию его создания и

эксплуатации. Коммутационные панели могут быть обьединены перемычками

(patch cables) с целью построения одного большого кольца.

[КС 19-5]

[ Форматы кадров IEEE 802.5 ]

[1 байт][1 байт][1 байт][6 байтов][6 байтов][>=0 байт][4 байта][1 байт][1 байт]

[Кадр Данные/команда]

[1 байт][1 байт][1 байт] [1 байт][1 байт]

[маркер]  [сброс]

[ к рис. на стр. 19-6 (в поле рисунка)]

[1]Форматы кадров IEEE 802.5

[5]В стандарте IEEE 802.5 определяются кадры данные/команда и маркер. Оба

кадра изображены на рисунке, их описание приводится в следующих параграфах.

Кадры данные/команда имеют переменный размер. Кадры данных (LLC-кадры)

переносят высокоуровневую информацию, т.е. протоколов более высокого уровня,

станции-приемнику. Кадры команд (MAC - кадры) переносят управляющую информацию необходимую для поддержания

работоспособности кольца. Они не содержат какой-либо информации для

вышележащих протокольных уровней.

Маркер имеет трехбайтовую длину. Маркер состоит из стартового разделителя,

байта управления доступом и концевого разделителя (Эти три поля будут

рассмотрены в данном разделе позднее). Когда ни одна из станций не передает

ни MAC-кадры, ни LLC-кадры, в кольце постоянно циркулирует маркер.

Для указания на преждевременное прекращение передачи кадра применяется

специальная последовательность - кадр сброса, состоящий из двух байтов

стартового и концевого разделителей.

[КС 19-6]

[1]Функции полей

[5]Каждое поле маркера или кадра данных связано по-крайней мере с выполнением

одной функции обеспечения процесса передачи данных.

[5]Стартовый разделитель

[5]Стартовый разделитель (SD - starting delimiter), располагаемый вначале

любого кадра, подготавливает станцию к приему кадра данных или маркера.

Данное поле представляется специальным образом, нарушающим нормальную схему

кодирования по методу дифференциального Манчестера, что позволяет отличить

его среди всех байтов принимаемого кадра.

[5]Байт управления доступом (АС), биты приоритета и резервирования.

[5]Байт АС (Access Control) содержит три бита приоритета (Р) и три бита

резервирования (R). Эти шесть битов используются совместно при реализации

приоритетного механизма.

---------------------------------

| P | P | P | T | M | R | R | R |

---------------------------------

[5] Рис. 19-1. Байт АС

С помощью трех битов P устанавливается приоритет кадра. Только те станции,

приоритет которых равен или больше, чем приоритет, указанный в поле АС

маркера, могут захватить маркер и начать передачу. Станции, передающие кадр

данных, могут установить в нем биты R для того, чтобы попытаться

зарезервировать для собственных нужд следующий маркер. Когда формируется

следующий маркер, то ему будет присвоен зарезервированный приоритет. Станции,

которые увеличивают приоритет маркера, несут ответственность за его

восстановление к прежнему значению.

[КС 19-7]

[5]На рисунке 19-2а иллюстрируется работа приоритетного механизма. На

рисунке изображено маленькое кольцо с четырьмя устройствами. Два устройства

имеют стандартный приоритет 0. Другие два имеют более высокий приоритет (4 и

6). На первом шаге станция А принимает маркер. Станция А (приоритет=0)

располагает данными для передачи. Приоритет маркера также нулевой. Поэтому

станция А захватывает маркер и передает кадр (шаг 2). На шаге 3 станция В

устанавливает значение битов резервирования равным 4 в переповторяемом кадре.

На шаге 4 станция С увеличивает значение битов резервирования до 6 и

передает данный кадр в кольцо. На шаге 5 станция D без каких-либо изменений

передает кадр станции А.

[ Frame - кадр ]

[ Token - маркер]

Рис. 19-2a. Приоритетный механизм маркерного кольца.

На шаге 1 (рисунок 19-2b) станция А изымает "свой" пакет из кольца и формирует

новый маркер с приоритетом равным 6 (последний зарезервированный приоритет).

На шаге 2 маркер ретранслируется станцией В (ее приоритет, равный 4,

недостаточен для захвата маркера) в направлении станции С. Станция С

захватывает маркер и формирует кадр данных (шаг 3).

[Рис. 19-2b]

[КС 19-8]

На шаге 1 и 2 (рисунок 19-2с) кадр проходит по кольцу и изымается станцией С

на шаге 3. Станция С формирует маркер с приоритетом равным 4 (станция С

"заполнила" старое значение битов резервирования, поскольку она несет

ответственность за восстановление приоритета маркера). На шаге 4 маркер

проходит станцию А.

[ Рис. 19-2с]

[5]Маркер (рисунок 19-2d) достигает станции В (шаг 1), которая захватывает

маркер и передает кадр данных (шаг 2).

[ Рис. 19-2d]

[КС 19-9]

[5]Когда кадр возвращается к станции В (рисунок 19-2е), он изымается из

кольца (шаг 1). При этом станция В формирует маркер с приоритетом 0 (шаг 2).

На шаге 3 и 4 маркер продолжает свою циркуляцию по кольцу.

[ Рис. 19-2e]

[5]Бит маркера в байте управления доступом

[5]Единичное значение бита "T" в байте АС идентифицирует, что кадр

представляет собой кадр данные/команда, нулевое значение бита "T" - маркер.

[5] Бит монитора в байте управления доступом

[5]Активный монитор выполняет проверку мониторного бита "M" в байте АС. Бит

"M" используется для очистки кольца от невостребованных, зациклившихся кадров.

Если значение бита "M" равно 0, то активный монитор изменяет его на 1. Если

же значение бита "M" равно 1 при прохождении пекета через активный монитор,

то пакет "поглощается", так как станция, передававшая пакет, перешла в

неактивное состояние, не успев изьять пакет из кольца и выдать новый

маркер.

[5]Байт управления (FC - frame control)

[5]С помощью байта FC указывается, содержит ли кадр данные или управляющую

информацию. Если кадр содержит управляющую информацию, то биты в этом поле

определяют конкретный тип управляющей информации. Например, некоторые

комбинации битов определяют команды поддержки работоспособности кольца. Байт

FC может быть использован для проверки существования станций с

одинаковыми адресами, для уведомления станции, что она является активным

монитором и т.п.

[КС 19-10]

[5]Адрес Назначения (DA - Destination Address)

[5]В данном шестибайтовом поле указывается адрес станции-назначения или

широковещательный, или групповой, или моно-адрес. Когда станция определяет,

что она является станцией-получателем, то осуществляется копирование

принимаемого кадра в память станции, и одновременная бит за битом

повторная выдача его в кольцо.

Длина Адреса Назначения зависит от реализации и должна быть согласована с

конкретной сетью. Адреса могут назначаться станциям в административном

порядке или же могут быть универсальными, а также определяться позиционным

расположением единичного бита в поле адреса.

[5]Адрес Источника (SA - Source Address)

[5]В этом поле располагается адрес станции, передающей данный кадр.

Принимаюшая станция может использовать этот адрес в тех случаях, когда

принятый кадр требует формирование какого-либо ответа.

[5]Поле информации (INFO)

[5]В этом поле переносится информация, предназначенная для высокоуровневых

протоколов. Длина поля INFO лимитируется, исходя из ограничений на допустимое

максимальное время захвата и удержания маркера в рамках одной станции.

[5]Контрольная сумма кадра (FCS - Frame Check Sequence)

[5]Значение данного поля используется для проверки того, что кадр принят

корректно. Для подсчета контрольной суммы используются значения полей FC, DA,

SA и INFO передаваемого кадра. Полученное значение размещается в поле FCS. При

приеме контрольная сумма пересчитывается и результат сравнивается со значением

из поля FCS. Если две величины отличаются друг от друга, то считается, что

принятый кадр искажен. В подсчет контрольной суммы не включаются другие поля,

отличные от указанных четырех, поскольку в ходе прохождения кадра по кольцу

их значение может быть модифицировано транзитными станциями.

[5]Концевой разделитель (ED -End Delimiter)

[5]С помощью концевого разделителя станциям указывается на конец кадра

маркера или кадра данных. Данное поле содержит бит, который устанавливается

принимающей станцией при обнаружении ошибки в принятом кадре (например,

несоответствие FCS). Станция-приемник может установить и другой бит, чтобы

таким образом отметить последний кадр в некоторой логической

последовательности. Байт, представляющий поле ED, передается специальным

образом, с нарушением схемы кодирования по методу дифференциального

Манчестера.

[КС 19-11]

[5]Байт статуса кадра (FS - Frame Status)

[5]Байт FS используется станцией назначения для того, чтобы проинформировать

передающую станцию-источник о состоянии кадра. В байте FS содержится

пара битов оповещения А и С (А - адресный, Address resolution и С -

копирования, Frame Copied).

Станция-источник кадра устанавливает биты А и С в 0 при передаче. Если

станция-источник получает свой кадр с неизменным значением битов А и С,

то делается предположение, что целевой станции в кольце нет.

Когда целевая станция выполнила прием кадра в свою память, она устанавливает

биты А и С в 1 в процессе ретрансляции кадра. Станция-источник кадра,

обнаружив установленными в 1 биты А и С в поле FS своего кадра, считает, что

кадр принят корректно.

В случае, когда целевая станция не копирует кадр в свою память по каким-либо

причинам (нет места в памяти или же обнаружена ошибка FCS и т.п.), она

устанавливает бит А в 1, оставляя неизменным значение бита С (в нуле).

Станция-источник кадра, получив такого рода оповещение, может принять

меры для повторной передачи кадра.

[5]Предостережение (beaconing)

[5]Стандарт IEEE 802.5 содержит спецификации ряда полезных свойств,

упрощающих процесс эксплуатации сети, позволяющих некоторым образом

автоматизировать процесс восстановления. Возможно наиболее важным из них

является процесс предупреждения (beaconing process). Всякий раз, когда

станция обнаруживает серьезные неполадки в сети (такие, как обрыв сети),

она передает кадр предупреждения. Кадр предупреждения определяет отказавший

участок сети (домен). Отказавший домен включает станцию, сообщающую об аварии,

ближайшую активную соседнюю станцию (NAUN -nearest active upstream neighbor)

и то, что между ними (см. рис.19-3). Кадр предупреждения не только позволяет

локализовать приблизительную зону "обрыва", но и инициирует процесс,

называемый автореконфигурацией, заключающийся в том, что узлы внутри

отказавшего домена автоматически выполняют диагностику и пытаются выполнить

реконфигурацию сети с тем, чтобы изолировать отказавший участок кольца.

[ Станция предупреждения ]

[ Обрыв ]

[ Отказавший Домен ]

[ NAUN ]

Рис. 19-3. Кадр предупреждения

[КС 19-12]

[1]Итоги

[5]Наиболее популярными маркерными кольцевыми сетями являются IEEE 802.5 и

Маркерное кольцо IBM. Эти две сети являются значительно более сложными в

сравнении с Ethernet/IEEE 802.3, но обеспечивают дополнительные возможности,

например, приоритетную передачу данных, (неполную) автоматическую диагностику

и детерминированную производительность. Стандарт IEEE 802.5 завоевывает

популярность сравнимую с популярностью стандартов IEEE 802.3/Ethernet.

[КС 19-13]

[1]Упражнение 19

[5]1. Перечислите достоинства систем, построенных на основе

cтандартов IEEE 802.5 и IEEE 802.3.

[КС 19-14]

[ ARCNET]

[0]Раздел 20 [2] ARCNET

[1]Цели

[5]В результате изучения данного раздела вы сможете:

1. Определять организации, которые распространяют и поддерживают ARCNET;

2. Определять основные характеристики и услуги, обеспечиваемые ARCNET;

3. Определять формат кадра ARCNET и функции его полей.

[1]Введение

[5]ARCNET (Attached Resource Computer NETwork) является простой, дешевой и

гибкой сетевой архитектурой, разработанной для относительно небольших

локальных сетей. В ARCNET специфицируются два нижних уровня Модели OSI. В

этом смысле она аналогична Ethernet, Маркерному кольцу и FDDI.

[КС 20-1]

[ ARCNET ]

 [ Эталонная Модель OSI ]

[ Эталонная ]

[ Модель OSI]

[ Канальный ]

[ Физический ]

[ к рис. на стр. 20-2 (в поле рисунка)]

[1] Обзор ARCNET

[5]Архитектура ARCNET была разработана в Корпорации Datapoint в 1977 году.

Несколько лет спустя технология ARCNET стала стандартом корпорации

Microsystems (SMC - Standard Microsystems Corporation), на основе которого

была разработана серия интегральных схем. Первые сетевые карты (NIC - Network

Interface Cards) с реализацией ARCNET были созданы в 1983 году. И хотя

корпорация NCR создала собственную версию SMC-кристаллов, реализующих ARCNET,

но на основе другой микроэлектронной технологии CMOS (Complementary Metal

Oxide Semiconductor), микросхемы корпорации SMC все еще наиболее популярны.

В настоящее время корпорация Datapoint сохраняет лицензионные

права на ARCNET, осуществляет координацию сертификационной деятельности,

которая способствует обеспечению совместимости ARCNET-продуктов, создаваемых

различными производителями.

Все производители ARCNET продуктов являются членами Ассоциации ARCNET (ATA -

ARCNET Trade Association). В состав ATA помимо производителей

ARCNET-продуктов, входят и пользователи. Ассоциация проводит конференции,

ведет процесс стандартизации в интересах расширения сфер охвата и применения

ARCNET-продуктов.

Несмотря на то, что стандарт ARCNET был разработан раньше стандартов Ethernet

и Маркерного кольца, он никогда не достигал их уровня популярности. Наиболее

быстрая версия ARCNET ("ARCNETplus", аннонсированная в 1989 году) пока еще не

появилась на рынке. Несмотря на все усилия Ассоциации ATA, Американский

институт стандартов ANSI сертифицировал ARCNET только в начале 1991 года. Тем

не менее достоинства ARCNET продолжают привлекать все большее число

пользователей.

[КС 20-2]

[ Конфигурация сети ARCNET ]

[ к рис. на стр. 20-3 (в поле рисунка)]

[1]Технология ARCNET

[5]ARCNET поддерживает три среды передачи данных (витую пару,

коаксиал и оптоволокно) и две топологии (шина и звезда). Передающие среды

и топологии могут быть интегрированы в гибридной сети, например, в такую,

которая представлена на рисунке.

Для реализации звездообразной топологии в большинстве сетей ARCNET

используется коаксиальный кабель RG - 62/U. В центре сети располагается

концентратор (hub), который может быть либо пассивным (non-repeating), либо

активным (repeating). Пассивный концентратор обеспечивает протяженность

одного луча звезды до 100 футов (около 30 метров). Активный концентратор

позволяет увеличить протяженность луча звезды до 2000 футов (около


Информация о работе «Технологии создания сетей»
Раздел: Компьютерные науки
Количество знаков с пробелами: 591939
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
89261
12
5

... одном из элективных курсов. Выбор естественно-математического профиля, во-первых, определяется целью введения данного курса в школе (расширение научного мировоззрения) и, во-вторых, сложностью темы в математическом аспекте. Глава 2. Содержание обучения технологии нейронных сетей Авторы данной работы предлагают следующее содержание обучения технологии нейронных сетей. Содержание образования ...

Скачать
32457
0
0

... выбирать наиболее качественные и надежные вещи. Таким образом, осуществляя консультационную функцию, магазин повышает свою привлекательность в глазах потенциальных клиентов. Сила "розничных магнитов" в торговых центрах Планирование торговли в торговом центре приобретает все большее значение, и торговцам важно оценить перспективы конкретного места. На этапе сдачи в аренду практически все центры ...

Скачать
58130
0
0

... , графику, видеофрагменты, звук. 1.3 Подготовка и реализация в электронном виде материала для пособия Так как перед нами стоит задача не создания электронного учебного пособия полностью, а подготовка текстового и наглядного материала для фрагмента учебника (в частности, двух глав), мы пользовались средствами программ Microsoft Word и Microsoft PowerPoint основного пакета MS Office. Основной ...

Скачать
85919
19
1

... условия. Необходимыми условиями при этом становятся гибкое производство, развитая информационная база маркетинга и его интегрированность с деятельностью других подразделений и служб предприятия.   Практическая часть работы Технология создания ЗАО “21 век” Введение Предпринимательство как явление, получившее развитие с возникновением капиталистических отношений, ...

0 комментариев


Наверх