5.4 Выбор способов и методов виброзащиты
Вибрации подвержены РЭС, установленные на автомобильном, железнодорожном транспорте, в производственных зданиях, на кораблях и самолетах.
Практический диапазон частот вибрации, действующей на РЭС, имеет широкий предел. Например, для наземной аппаратуры, переносимой или перевозимой на автомашинах, частота достигает 120 Гц при ускорении, действующем на приборы, до 6 g. Работающие в таких условиях РЭС должны обладать вибропрочностью и виброустойчивостью.
Вибропрочность - способность РЭС противостоять разрушающему действию вибрации в заданных диапазонах частот и при возникающих ускорениях в течение срока службы.
Виброустойчивость - способность выполнять все свои функции в условиях вибрации в заданных диапазонах частот и возникающих при этом ускорениях.
Известно, что в приборах, не защищенных от вибрации и ударов, узлы, чувствительные к динамическим перегрузкам, выходят из строя. Делать такие узлы настолько прочными, чтобы они выдерживали максимальные (действующие) динамические перегрузки, не целесообразно, так как увеличение прочности, в конечном счете, ведет к увеличению массы, а вследствие этого и к неизбежному возрастанию динамических перегрузок. Поэтому целесообразно использовать другие средства для снижения перегрузок [8].
Покрытие платы лаком не только обеспечивает защиту от вибрации, но и создает дополнительные точки крепления элементов к плате.
В разрабатываемой конструкции блока управления электромеханическим замком применено два вида соединений: разъемные и неразъемные. К первому виду относятся в основном резьбовые соединения, ко второму -- пайка, сварка, развальцовка.
Основным недостатком резьбовых соединений является самоотвинчивание при действии вибрации. Для устранения самоотвинчивания в разрабатываемой конструкции применяются контровочные шайбы.
Сварочные соединения должны быть точно рассчитаны, качество сварки должно контролироваться.
6 Расчет конструктивных параметров изделия
6.1 Компоновочный расчет блоков РЭС
Выбор компоновочных работ на ранних стадиях проектирования позволяет рационально и своевременно использовать или разрабатывать унифицированные и стандартизированные конструкции РЭС. В зависимости от характера изделия (деталь, прибор, система) будет выполняться компоновка различных ее элементов. Основная задача, которая решается при компоновке РЭС, - это выбор форм, основных геометрических размеров, ориентировочное определение веса и расположение в пространстве любых элементов или изделий РЭС. На практике задача компоновки РЭС чаще всего решается при использовании готовых элементов (деталей) с заданными формами, размером и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, механических, тепловых и др. видов связи.
Методы компоновки элементов РЭС можно разбить на две группы: аналитические и модельные. К первым относятся численные и номографические, основой которых является представление геометрических или обобщенных геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели.
Основой всех методов является рассмотрение общих аналитических зависимостей. При аналитической компоновке мы оперируем численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, мы можем вычислить компоновочные характеристики всего изделия и его частей.
Для определения размеров печатных плат и габаритных размеров корпуса БУ произведем компоновочный расчет.
Рассчитаем установочные площади типоразмеров элементов, устанавливаемых на печатные платы. Установочные габариты элементов приведены в таблице 6.1.1.Таблица 6.1.1 – установочные габариты элементов.
| Тип | Количество, шт. | Площадь, мм | Объем, мм | |||||||||
1 | 2 | 3 | 4 |
| |||||||||
Процессорная плата |
| ||||||||||||
Резисторы |
| ||||||||||||
С2-23-0,125 | 11 | 24 | 72 |
| |||||||||
Конденсаторы |
| ||||||||||||
К50-35-100X16В | 2 | 50 | 650 |
| |||||||||
МО-21 | 5 | 48 | 384 |
| |||||||||
Диоды |
| ||||||||||||
КД522А | 6 | 22 | 66 |
| |||||||||
Микросхемы |
| ||||||||||||
ЭКР1830ВЕ31 | 1 | 775 | 3875 |
| |||||||||
D27C64 | 1 | 548 | 2957 |
| |||||||||
DS1230 | 1 | 548 | 2957 |
| |||||||||
ЭКР1568РР1 | 2 | 75 | 375 |
| |||||||||
ЭКР1554ИР22 | 1 | 195 | 975 |
| |||||||||
К561ТЛ1 | 1 | 150 | 750 |
| |||||||||
Транзисторы |
| ||||||||||||
КТ3102 | 2 | 20 | 180 |
| |||||||||
Прочие элементы |
| ||||||||||||
Резонатор кварцевый РК351 | 1 | 40 | 640 |
| |||||||||
Итого в сумме | 3182 | 175432 |
| ||||||||||
Продолжение таблицы 6.1.1 |
| ||||||||||||
1 | 2 | 3 | 4 |
| |||||||||
Базовая плата |
| ||||||||||||
Резисторы |
| ||||||||||||
С2-23-0,125 | 24 | 24 | 72 |
| |||||||||
С2-23-0,5 | 1 | 56 | 392 |
| |||||||||
С2-23-2 | 1 | 192 | 1728 |
| |||||||||
Диоды |
| ||||||||||||
КД522А | 8 | 22 | 66 |
| |||||||||
КД243 | 9 | 42 | 210 |
| |||||||||
КС147 | 1 | 22 | 66 |
| |||||||||
Транзисторы |
| ||||||||||||
КТ3102 | 4 | 30 | 270 |
| |||||||||
КТ3107 | 2 | 30 | 270 |
| |||||||||
КТ973 | 3 | 24 | 312 |
| |||||||||
Конденсаторы |
| ||||||||||||
К50-35-2200X25В | 1 | 380 | 13305 |
| |||||||||
К50-35-220X16В | 1 | 80 | 1040 |
| |||||||||
К50-35-100X16В | 1 | 50 | 754 |
| |||||||||
МО-21 | 8 | 48 | 384 |
| |||||||||
Микросхемы |
| ||||||||||||
КР142ЕН5А | 1 | 45 | 990 |
| |||||||||
Прочие элементы |
| ||||||||||||
Трансформатор | 1 | 4225 | 190125 |
| |||||||||
Вставка плавкая ВП1-1 | 4 | 140 | 1120 |
| |||||||||
Клемник 3-х контактный | 3 | 135 | 1755 |
| |||||||||
Клемник 2-х контактный | 2 | 90 | 1170 |
| |||||||||
Реле РЭС-49 | 1 | 55 | 1375 |
| |||||||||
Итого в сумме | 8036 | 231634 |
| ||||||||||
Окончание таблицы 6.1.1 |
| ||||||||||||
1 | 2 | 3 | 4 |
| |||||||||
Блок индикации |
| ||||||||||||
Светодиоды АЛ307 | 2 | 28 | 283 |
| |||||||||
Головка динамическая | 1 | 1964 | 23562 |
| |||||||||
Итого в сумме | 2020 | 24128 |
| ||||||||||
Площадь с учетом коэффициента заполнения:
S = S'/Кз (6.1.1)
где S' – суммарная установочная площадь элементов;
Кз – коэффициент заполнения (для стационарной наземной РЭА принимаем равным 0,4).
Подставив, получим:
- для процессорного модуля S = 3176/0,4=7940 мм;
- для базового модуля S = 7694/0,4=19235 мм;
- для модуля индикации S = 2020/0,4=5050 мм.
Далее по таблице предпочтительных размеров, по ГОСТ10317-79 , получаем размеры печатных плат:
- для процессорного модуля 120x57 мм;
- для базового модуля 120x140 мм;
- для модуля индикации 70x65 мм.
Ширина процессорного модуля одновременно является максимальной высотой элемента, так как впаивается в базовый блок. Его высота составляет 57 мм.
Далее, зная размеры печатных плат и максимальную высоту элемента и габариты аккумулятора, определяем габариты корпуса прибора, используя предпочтительные ряды чисел. Получим: длина - 183 мм, ширина - 130 мм, высота - 65 мм. Итого объем корпуса:
V = 183 130 65 = 1546350 мм.
Определяем коэффициент заполнения по объему по формуле (6.1.2):
, (6.1.2)
где – суммарный объем всех элементов:
, мм (6.1.3)
где - суммарный объем элементов базового блока;
- суммарный объем элементов процессорного блока;
- суммарный объем элементов блока индикации;
- объем аккумулятора (110х55х75 мм).
Подставив значения в формулы 5.3 и 5.2 получим:
= 265234+189112+33228+453750=941324 мм.
= 941324/1546350 = 0,6
Выбор печатного монтажа радиоэлементов в блоке обусловлен заданной программой выпуска изделия – 1000шт/год. Печатный монтаж в этом случае является наиболее экономически целесообразным.
При разработке печатных плат необходимо руководствоваться следующими документами:
- ГОСТ23751‑86;
- ГОСТ10317‑79;
- ОСТ4ГО.010.009;
- СТБ 1014-95;
- и другие.
Исходными данными к разработке топологии печатной платы является:
- схема электрическая принципиальная;
- установочные размеры радиоэлементов узла;
- рекомендации по разработке монтажа для выбранной серии микросхем.
Рекомендации по разработке печатных плат:
- Разводка питающего напряжения узлов и блоков (шин «земля» и «питание») должна проводиться проводниками с возможно более низким сопротивлением.
- Низкочастотные помехи, проникающие в систему по шинам питания, должны блокироваться с помощью конденсатора, включенного между выводами «питание» и «земля» непосредственно у начала проводника на печатной плате.
- Информационные линии связи рекомендуется выполнять с помощью печатного монтажа.
- Проводники, расположенные на различных сторонах платы, должны перекрещиваться под углом 900 или 450 и иметь минимальную длину.
- Максимально допустимая длина печатных параллельных проводников, расположенных на одной стороне платы при ширине проводников от 0.5 до 5мм, не должна превышать 30см.
С целью уменьшения габаритных размеров разрабатываемой конструкции печатную плату указанного узла целесообразно выполнять двухсторонней. Класс точности печатной платы базового модуля выбираем второй.
Печатные платы первого и третьего классов точности наиболее просты в исполнении, надежны в эксплуатации, имеют минимальную стоимость. Для повышения надежности паяных соединений, отверстия в печатных платах необходимо выполнить металлизированными. Конфигурация печатных плат прямоугольная. Шаг координатной сетки выбран равным 1.25мм как наиболее предпочтительный. Установку радиоэлементов на плате необходимо производить в соответствии с ГОСТ 29137 - 91.
... переговорные (аудио) видеоустройства. Системы серии PERCoMS400 могут использоваться в сочетании с более сложными системами контроля и управления доступом. При этом одни и те же карточки могут служить пропусками на все разрешенные к доступу объекты. Максимальное число пользователей для систем PERCoMS400 составляет примерно 500 человек. В настоящее время серия PERCoMS400 имеет несколько моделей. ...
... без сохранения воспользуйтесь кнопкой Отмена или закройте окно стандартным для Windows приемом. Примечание. 1. Программы-архиваторы в состав программно-аппаратного комплекса Менуэт 2000 не входят и для поддержания возможности создания архивов баз данных регистрации и объектов контроля Вы должны позаботиться о наличии на жестких дисках АРМ'М, на которых инсталлированы модули ПАК Менуэт 2000 ...
... электродвигатель. Редуктор состоит из двух ступеней зубчатой передачи Zi и Z2 (рис. 3), самотормозящейся винтовой пары Z3 и зубчатой передачи с внутренним зацеплением Z4,Z5. Рис. 2 Протез предплечья с биоэлектрическим управлением с двумя функциями Максимальный вращающий момент привода составляет 0,5 - 5 Н*м; число поворотов — не менее 15 об/мин; масса протеза не превышает 1,2 кг. Рис. ...
... ввести распределенную обработку во всех подсистемах вычислительной системы, что определяет новые способы организации вычислительных процессов в системах с децентрализованными управлением и обработкой информации. 2. Интерфейс микропроцессоров Для включения микропроцессора в любую микропроцессорную систему необходимо установить единые принципы и средства его сопряжения с остальными устройствами ...
0 комментариев