5. ОПРЕДЕЛЕНИЕ ОДНОМЕРНОГО РАСПРЕДЕЛЕНИЯ, МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ, ДИСПЕРСИИ, КОРРЕЛЯЦИОННОЙ ФУНКЦИИ НА ВЫХОДЕ СИНХРОННОГО ДЕТЕКТОРА
На вход синхронного детектора поступает случайный процесс
Z(t)=S0S(t)cos(t+)+X x(t)cos(0t+)+Y y(t) sin0t, который представляет собой аддитивную смесь АМ сигнала с подавленной несущей и флуктуационного шума. Здесь S0 – масштаб сигнала, S(t) – случайный модулирующий сигнал с нулевым средним значением. Опорный сигнал U(t)=bcos(0t+).
Масштаб сигнала (S0) = 0.1
Дисперсия (2) = 1 В2
Масштаб независимых квадратурных компонент гауссовского нормального шума; X = 0.005 B, Y = 0.005 B
Определить одномерное распределение выходного продукта, его математическое ожидание и дисперсию; корреляционную функцию и энергетический спектр для флуктуирующей части; отношение сигнал/шум на выходе детектора.
6. РАСЧЕТ ШИРИНЫ СПЕКТРА ИКМ-ЧМ СИГНАЛА.
Сигналы импульсно-кодовой модуляции подается на модулятор с помощью которого осуществляется частотная манипуляция, требуется:
рассчитать ширину спектра сигнала ИКМ-ЧМ;
сравнить с верхней граничной частотой спектра сигнала FB;
нарисовать временную диаграмму напряжения на выходе модулятора.
Ширина спектра исходного аналогового сигнала ограничена частотой.FB каждая выборка может принимать одно из 2Fв разрешенных значений называемых уровнями квантования. В свою очередь уровни квантования заменяются при кодировании комбинацией из n=logL двоичных импульсов. Следовательно длительность каждого импульса не может быть больше чем :
и=t/n=t/logL=logL/2=log 256/2=4
сигнала ИКМ-ЧМ будет занимать полосу частот:
=4FBlogL=41000738=3202,336 кГц
Сравнивая с FB мы видим , что FB на величину 4logL, а так как чем больше L, тем выше помехоустойчивость, то при передаче ИКМ сигналов мы выигрываем в помехоустойчивости но проигрываем в полосе частот , тоесть происходит ''обмен'' мощности сигнала на полосу частот.
Временная диаграмма напряжения на выходе модулятора изображена на рис.5.
U(t)
1 0 1
t
Uчм(t)
t
Рис.5.
... дискретным каналом. При этом необходимо преобразовать непрерывное сообщение в цифровой сигнал, т.е. в последовательность символов, сохранив содержащуюся в сообщении существенную часть информации. Типичными примерами цифровых систем передачи непрерывных сообщений являются системы с импульсно–кодовой модуляцией (ИКМ) и дельта–модуляцией (ДМ). Для преобразования непрерывного сообщения в цифровую ...
... несущими и амплитудно-фазовая модуляция с одной боковой полосой (АФМ-ОБП). 3. Выбор длительности и количества элементарных сигналов, используемых для формирования выходного сигнала В реальных каналах связи для передачи сигналов по частотно ограниченному каналу используется сигнал вида , но он бесконечен во времени, поэтому его сглаживают по косинусоидальному закону. , где - ...
... Вид сигнала при модуляции прямоугольными импульсами со скважностью 2: рис. 3 Для отыскания спектра сигнала ДФМ запишем: Спектры сигналов для различных значений: Рис. 4 2.3 Расчет вероятности ошибки на выходе приемника. Вероятность ошибки на выходе приемника определяется формулой где Ф() – функция Крампа q – отношение мощности сигнала к ...
стемы. Содержание Нормативные ссылки Введение 1 Расчет информационных характеристик источников дискретных сообщений 2 Расчет информационных характеристик дискретного канала 3 Согласование дискретного источника с дискретным каналом 4 Дискретизация и квантование Заключение Нормативные ссылки В настоящем отчете использованы ссылки на следующие стандарты: - ГОСТ 1.5 – 93 ...
0 комментариев