4.2. Лиотропные жидкие кристаллы

В отличие от термотропных жид ких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гид рофобные группы. Такие соединения широко распространены в природе. Так, например, любая жирная кислота является амфифильной. Ее молекулы состоят из двух частей: полярной "головки" (СООН-группа) и углеводородного "хвоста" [СН3(СН2)n—]. Подобные соединения при растворении в воде, как правило, образуют мицеллярные растворы, в которых полярные головки торчат наружу, находясь в контакте с водой, а углеводородные хвосты, контактируя друг с другом, смотрят вовнутрь. Таки е миц еллы (рис. 4, а) и являются теми структурными элементами, из которых строятся лиотропные жидкие кристаллы, формируя, например, цилиндрическую или ламеллярную формы (рис. 4, б, в).

В отличие от термотропных жидких кристаллов, где формирование определенного типа мезофазы определяется лишь температурой, в лиотропных системах тип структ урн ой организации определяется уже двумя параметрами: концентрацией вещества и температурой. Лиотропные жидкие кристаллы наиболее часто образуются биологическими системами, функционирующими в водных средах. Именно в эти х системах в наиболее яркой форме проявляются уникальные особенности жидких кристаллов, сочетающих лабиль ность с высокой склонностью к самоорганизации. Ограничимся лишь одним при мером, относящимся к клеткам и внутриклеточным органеллам, покрытым тонкими высокоупорядоченными оболочками - мембранами. Современные структурные исследования показывают, что мембраны представляют собой типичные лиотропные ламеллярные лабильные ЖК-структуры, составлен ные из двойного слоя фосфолипидов, в котором "растворены" белки, полисахарилы, холестерин и другие жизненно важные компоненты (рис. 4, г). Такое ан из отропное строение мембраны, с одной стороны, по зволяет защ ищ ать ее внутреннюю часть от нежелательных внешних воздействий, а с другой стороны, ее "жидкостной" характер обеспечивает высокие транспортные свойства (прониц аемость, перенос ионов и др.), что придает клетке определяющ ую роль в процессах жизнедеятельности.

Жидкие кристаллы, история открытия жидких кристаллов, структура, типы и их применение

Рис. 4. Некоторые типы лиотропных жидкокристаллических структур, образованные амфифиль ными молекулами в водных растворах: а - цилиндрическ ая мицел ла, б - гексагональная упаковка цилиндрических мицелл, в - ламеллярный смектический жидкий кристалл; г - строение мембраны, состоящей из фосфолипидного двойного слоя ( 1) и молекул белков (2).

4.3 Нематические жидкие кристаллы

Начнем описание устройства жидких кристаллов на примере наиболее простой и хорошо изученной их разновидности, нематических жидких кристаллов, или, как еще принято говорить, нематиков, Итак, кристаллы некоторых органических веществ при нагревании, прежде чем расплавиться и перейти в обычную жидкость, проходят при повышении температуры через стадию жидкокристаллической фазы. Как мы увидим ниже, жидкокристаллических фаз может быть у одного и того же соединения несколько. Но сначала для того, чтобы не осложнять знакомство с жидкокристаллической фазой несущественными здесь подробностями, рассмотрим наиболее простую ситуацию, когда соединение обладает одной жидкокристаллической фазой. В этом случае процесс плавления кристалла идет в две стадии. Сначала при повышении температуры кристалл испытывает «первое плавление», переходя в мутный расплав. Затем при дальнейшем нагреве до вполне определенной температуры происходит «просветление» расплава. «Просветленный расплав» обладает всеми свойствами жидкостей. Мутный расплав, который и представляет собой жидко' кристаллическую фазу, по своим свойствам существенно отличается от жидкостей, хотя обладает наиболее характерным свойством жидкости — текучестью. Наиболее резкое отличие жидкокристаллической фазы от жидкости проявляется в оптических свойствах. Жидкий кристалл, обладая текучестью жидкости, проявляет оптические свойства всем нам знакомых обычных кристаллов.

При понижении температуры все превращения происходят в обратном порядке и точно при тех же температурах, т. е. последовательность фаз такова: прозрачный расплав-смутный расплав-^кристалл или в принятых сокращениях ИЖ-^НЖК-^ТК. " Если все описанные превращения наблюдаются, например, для соединения п—метонсйбензилиден—п'—бу-тиланилин или, как принято сокращенно называть это соединение, МББА, то наблюдаемая жидкокристаллическая фаза называется нематической или просто немати-KOMj Смена же фазовых состояний характеризуется следующими температурами. Температура первого плавления Гя,=21°С. Ниже ТдМББА находится в обычном кристаллическом состоянии. От Т^ до температуры просветления 7^==41°С МББА обладает нематической жидкокристаллической фазой, и выше Тм — обычная (изотропная) жидкость. Интервал температур от Гд, до tn для различных веществ может быть от единиц до сотни гра дусов. Типичное же значение этого интервала — порядка нескольких десятков градусов.

Чтобы схематично представить себе устройство нематика, удобно образующие его молекулы представить в виде палочек. Для такой идеализации есть физические основания. Молекулы, образующие жидкие кристаллы, как уже говорилось, представляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, протяженности которых в одном направлении в 2—3 раза больше, чем в поперечном. Можно считать, что направление введенных нами палочек совпадает с длинными осями молекул. При введенной нами идеализации структуру нематика следует представлять как «жидкость одинаково ориентированных палочек». Это означает, что центры тяжести палочек расположены и движутся хаотически, как в жидкости, а ориентация при этом остается у всех палочек одинаковой и неизменной.

Напомним, что в обычной жидкости не только центры тяжести молекул движутся хаотически, но и ориентации выделенных направлений молекул совершенно случайны и не скоррелированны между собой. А в качестве выделенных направлений в молекуле могут выступать различные величины, например, электрический дипольный момент, магнитный момент или, как в рассматриваемом нами случае, анизотропия формы, характеризуемая выделенными направлениями или, как говорят, осями. В связи с описанным полным хаосом в жидкости жидкость (даже состоящая из анизотропных молекул) изотропна, т. е. ее свойства не зависят от направления.

На самом деле, конечно, молекулы нематика подвержены не только случайному поступательному движению, но и ориентация их осей испытывает отклонения от направления, определяющего ориентацию палочек в рассматриваемой нами жидкости. Поэтому направления палочек задают преимущественную, усредненную ориентацию, и реально молекулы совершают хаотические ориентационные колебания вокруг этого направления усредненной ориентации. Амплитуда соответствующих ориен-тационных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость tn, возрастая по мере приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул полностью исчезает и ориентационные движения молекул так же, как и трансляционные, оказываются полностью хаотическими.

В связи с описанной картиной поведения нематика его принято описывать следующим образом. Для характеристики ориентационного порядка вводится вектор единичной длины с, называемый директором, направление которого совпадает с направлением введенных выше палочек. Таким образом, директор задает выделенное, преимущественное, направление ориентации молекул в холестерине. Кроме того, вводится еще ОДНА величина, параметр порядка, который характеризует, насколько велика степень ориентационного упорядочения молекул или, что то же самое, насколько мала разупорядоченность ориентаций молекул. Параметр порядка определяется следующим образом:

S=^«cos»e>-73 (1)

где в—угол между направлениями директора и мгновенным направлением длинной оси молекул, a <cos*e> - обозначает среднее по времени значении cos'@.

Из формулы (1) ясно, что параметр 5 может принимать значения от 0 до 1. Значение -S==1 соответствует полному ориентационному порядку. Причем .S==1 достигается, как нетрудно понять, если значение В не изменяется во времени и равно 0, т. е. если направление длинных осей молекул строго совпадает с направлением директора. <S==0 означает полный ориентационный беспорядок. В этом случае угол 9 с равной вероятностью принимает значения от 0 до л, a -<cos^9>=='/3. Значение S==0, таким образом, соответствует уже нематику, перешедшему в изотропную жидкость.

В нематической же фазе значение параметра порядка S^>0, минимально непосредственно при температуре перехода Т 14 из изотропной жидкости в нематическую фазу и возрастает по мере понижения температуры ниже tn' В целом же при изменении температуры происходит смена следующих фазовых состояний. При температуре ниже точки перехода нематика в обыкновенный кристалл или, как ее называют, температуре плавления Тщ — кристаллическое состояние. В интервале температур от Т м, до tn—нематический жидкий кристалл. Выше tin— обычная жидкость.

Пока что речь шла об однодоменном состоянии нема-тического образца, в котором ориентация директора одинакова во всех его точках. В таком однодоменном образце нематика наиболее ярко проявляются его свойства, типичные для твердых кристаллов, в частности, двупреломление света. Последнее означает, что показатели преломления для света, плоскость поляризации которого перпендикулярна директору и плоскость поляризации которого содержит директор, указываются различными. Однако для того чтобы полунить однодоменный образец нематика, как, впрочем, и любых других разновидностей жидких кристаллов, необ ходимо принятие специальных мер, о которых будет рассказано ниже.

Если же не приняты специальные предосторожности, то жидкокристаллический образец представляет собой совокупность хаотическим образом ориентированных малых однодоменных областей. Именно с такими образцами, как правило, имели дело первые исследователи жидких кристаллов, и мутный расплав, возникавший после первого плавления МББА, о котором говорилось выше, и был образцом такого вида. На границах раздела различным образом ориентированных однодоменных областей в таких образцах происходит, как говорят, нарушение оптической однородности или, что то же самое, скачок значения показателя преломления. Это непосредственно следует из сказанного выше о двупреломлении однодоменного нематического образца и просто соответствует тому, что для света, пересекающего границу раздела двух областей с различной ориентацией директора, показатели преломления этих областей различны, т. е. показатель преломления испытывает скачок. А как хорошо известно, на границе раздела двух областей с различными показателями преломления свет испытывает отражение. С таким отражением каждый знаком на примере оконных стекол. Так же, как и в случае с оконным стеклом, на одной границе раздела (одном скачке оптической однородности) отражение света в нематике может быть невелико, но если таких границ много (в образце много неупорядоченных однодоменных областей), такие нерегулярные нарушения оптической однородности приводят к сильному рассеянию света. Вот почему нематики, если не принять специальных мер, сильно рассеивают свет. После первого плавления при температуре Тд, возникает мутный расплав.

Пока что речь шла о том, как выглядит нематик в неполяризованном свете. Очень интересную и своеобразную картину представляет нематик, если его рассматривать в поляризованном свете и анализировать поляризацию прошедшего через него света. Поляризатор Pi линейно поляризует свет от источника света, а поляризатор Pi пропускает только определенным образом линейно поляризованный свет, прошедший через нематический образец А. Картина, которую увидит наблюдатель в свете, прошедшем через поляризатор, представляет собой причудливую совокупность пересекающихся линий. Эти линии или, как их называют, нити и представляют собой изображение границ раздела между однодоменными областями.

Нема — это по гречески нить. Отсюда и название — нематический жидкий кристалл или нематик. Здесь же надо сказать, что реально наблюдения описанной картины нематика в связи с малостью размеров областей с одинаковой ориентацией директора осуществляются с помощью поляризационного микроскопа.


Информация о работе «Жидкие кристаллы, история открытия жидких кристаллов, структура, типы и их применение»
Раздел: Математика
Количество знаков с пробелами: 35976
Количество таблиц: 1
Количество изображений: 10

Похожие работы

Скачать
28196
2
11

... кристалла. 2 - стеклянные пластинки, 3 - токопроводящий слой, 4 - диэлектрическая прокладка, 5 - поляризатор, 6 - источник электрического напряжения. Гомеотропная ориентация реализуется для жидких кристаллов с положительной диэлектрической анизотропией (De > 0) (рис. 5, б). В этом случае длинные оси молекул с продольным дипольным моментом располагаются вдоль направления поля перпендикулярно ...

Скачать
55784
0
12

... последних используются фуллерены, нанотрубки, нановолокна, наночастицы, J–агрегаты, др. Исследуются структурные, химические, спектральные, фотопроводниковые, электрические, нелинейно-оптические свойства жидких кристаллов и нанокомпозитов на их основе; изучаются механизмы взаимодействия теплового излучения, магнитного и электрического полей, а также лазерного излучения широкого спектрального и ...

Скачать
169673
2
43

... надо иметь в виду возможность структурных особенностей времени для каждого такого вида.   II Силы  взаимодействия  и  строение кристаллов2.1.Природа сил связи в кристаллах. Различные типы кристаллов и возможное расположение узлов (точка, относительно которой атом (молекула) совершает колебания) в пространственной решётке ...

Скачать
34678
0
1

... кислых магматических пород (гранитов). Коренное золото ищут преимущественно в кварцевых жилах. Знание парагенезиса минералов облегчает задачу поисковиков полезных ископаемых по их спутникам. Например, спутник алмаза – пироп – помог открытию коренных месторождений алмазов в Якутии. 2. методы выращивания кристаллов   В зависимости от фазы, из которой выращивают кристалл, различают четыре метода ...

0 комментариев


Наверх