3.2 Время перемещения рабочего органа манипулятора при малых расстояниях между рабочими точками

Модель портального манипулятора

Часто возникают случаи, когда расстояние между двумя рабочими точками мало и рабочий орган манипулятора не успевает набрать максимально возможную скорость. При этом траектория движения состоит только из двух участков – разгона и торможения (см. рис. 3.3.). Скорость рабочего органа на участке разгона достигает некоторого значения Модель портального манипулятора, длина этого участка составит:

Модель портального манипулятора,

(3.11)

где Модель портального манипулятора – максимальная скорость которую успевает набрать рабочий орган манипулятора; Модель портального манипулятора – максимальное ускорение рабочего органа манипулятора.

На втором участке траектории необходимо производить торможение рабочего органа в связи с тем что по достижению конечной точки его скорость должна иметь значение Модель портального манипулятора, при этом длина второго участка составит:

Модель портального манипулятора,

(3.12)

тогда складывая выражения (3.11) и (3.12) получим суммарное перемещение рабочего органа:

Модель портального манипулятора.

(3.13)

Зная расстояние между двумя рабочими точками, из (3.13) получим выражение для определения максимально достигнутой скорости:

Модель портального манипулятора.

(3.14)

Используя (3.14) определим время перемещения рабочего органа на первом:

Модель портального манипулятора,

(3.15)

и втором участке:

Модель портального манипулятора.

(3.16)

Суммируя выражения (3.15), (3.16) и (2.33) получим выражение для определения времени перемещения с учетом переходного процесса при условии, что рабочий орган не успевает набрать максимальную скорость:

Модель портального манипулятора

(3.17)

Анализируя выражение (3.17) относительно скорости выхода на конечную точку Модель портального манипулятора, получаем график времени перемещения рабочего органа манипулятора с учетом переходного процесса (см. рис.3.4) для малых перемещений рабочего органа.

Модель портального манипулятора

3.3 Получение оптимальной скорости в момент выхода на конечную точку

Анализ выражений (3.10) и (3.17) показывает (см. рис. 3.2, 3.4), что время перемещения рабочего органа будет минимально при таком значении скорости Модель портального манипулятора, когда переходный процесс в системе отсутствуют, то есть максимальная амплитуда колебаний не превышает допустимой погрешности позиционирования Модель портального манипулятора. Для определения скорости Модель портального манипулятора, достаточно прировнять к нулю выражение (2.33):

Модель портального манипулятора.

(3.18)

Решение (3.18) относительно Модель портального манипулятора имеет вид:

Модель портального манипулятора.

(3.19)

Выражение (3.19) определяет такое значение скорости в момент выхода на конечную точку при которой амплитуда переходного процесса не превышает предельно допустимого значения, а следовательно время перемещения рабочего органа определяемое выражениями (3.10) и (3.17) минимально.

Анализ графиков зависимости времени перемещения с учетом переходного процесса от скорости выхода на конечную точку (см. рис. 3.2, 3.4.) показывает, что скорость выхода значительно влияет на время перемещения рабочего органа и отклонение скорости в большую сторону от расчетного значения ведет к значительным потерям времени за счет увеличения длительности переходного процесса.

Если проанализировать выражения (3.10) и (3.17) относительно допустимой погрешности позиционирования Модель портального манипулятора, то можно сделать вывод, что при увеличении допустимой погрешности позиционирования (см. рис. 3.5, 3.6.) наблюдается уменьшение времени перемещения, что можно использовать на операциях с низким требованием к точности, хотя это уменьшение весьма не значительное.

Модель портального манипулятора

Модель портального манипулятора


Информация о работе «Модель портального манипулятора»
Раздел: Наука и техника
Количество знаков с пробелами: 38016
Количество таблиц: 70
Количество изображений: 39

Похожие работы

Скачать
80670
142
306

... к точности, хотя это уменьшение весьма не значительное. 4.Программные средства для исследования динамической модели портального манипулятора 4.1 Программа для вычисления параметров переходного процесса портального манипулятора Для исследования полученной динамической модели, построения графиков приведенных в работе, использовалась программа “Модель портального манипулятора МРЛ-901П в момент ...

Скачать
39422
0
40

... проектировании. В курсовом проекте необходимо совершенствовать технологический процесс механической обработки детали 245.2303018 Коробка дифференциала с программой выпуска 10000 штук в год. 2. Технологический раздел. 2.1.Определение типа производства В машиностроении в зависимости от программы выпуска изделий и характера изготовляемой продукции различают три основных типа производства ...

Скачать
39025
6
9

... 500 - 100 0,2 шлифовальная Шлифовать пов. 6 Круг СМ1 0,4 - - 300 6,0 14 24 1,6 Шлифовать торец 14 Круг СМ1 0,4 - - 300 6,0 18 109 1,6 В данной работе предлагается разработка автоматической линии для осуществления той части техпроцесса, которая связана с обработкой отверстий и фрезерованием канавок. Таким образом, для данной линии не учитываются токарные и шлифовальные ...

Скачать
80149
9
1

... в таблицу 3.1. Учитывая, что в машине два мотора и рассматривая прямолинейное движение, результаты  и  нужно удвоить. На основании таблицы 3.1 строим график, изображенный на рисунке 3.1. колесный сотриментовоз комбинированная трансмиссия Таблица 3.1. Изменение давления в зависимости от изменения производительности насоса при n=2000 об/мин 0 13 26 39 52 65 78 91 117 130 ...

0 комментариев


Наверх