6.2 Экспериментальное исследование теплового режима системного блока ПЭВМ
В качестве исследуемого блока выберем блок персональной ЭВМ, который конструктивно содержит трансформаторный блок питания для питания электронной части ПЭВМ. Электронная часть реализована в виде объединительной панели (корзины) с установленными на ней горизонтально ячейками. Технические характеристики блока приведены в Приложении 2.
Как известно, температура нагрева устройства оказывается выше температуры окружающей среды, в результате чего происходит процесс отдачи тепла в окружающую среду. Этот процесс идет тем интенсивнее, чем больше разность температур рассматриваемого устройства и окружающей среды. Кроме того, следует помнить, что нагрев блока определяется величиной энергии, зависящей от времени. Если за определенный промежуток времени в блоке выделяется тепла больше, чем он может рассеять в окружающую среду, то тепло идет на нагрев элементов прогрессирует (нестационарный режим). В зависимости от конструкции изделия, а также от условий окружающей среды, через некоторое время наступает установившийся (стационарный) режим, при котором дальнейший нагрев элементов прекращается, и в окружающую среду отдается постоянная тепловая энергия.
Таким образом, для получения достоверных данных о реальном (стационарном) тепловом режиме исследуемого блока необходимо проводить измерения температур тепловыделяющих элементов через некоторое время (15 – 20 минут) после включения устройства.
В эксперименте целесообразно исследовать тепловой режим не всех компонентов входящих в состав блока, а лишь критичных к перегреву (в частности, ИМС - см. Приложение 2).
Необходимо также помнить, что кроме источников тепла, по которым производятся измерения, в исследуемом блоке присутствуют и нерассматриваемые источники тепловой энергии.
Учитывая вышеизложенное, произведем экспериментальное исследование теплового режима рассматриваемого блока. Датчики установим на поверхности исследуемых ИМС. Результаты исследования приведены на плакате БГУИ.411117.004Д (на первую ИМС, приведенную в таблице, поместим датчик №1, на 12-ую - №12).
Полученные в ходе проведенного эксперимента значения температур компонентов исследуемого блока ПЭВМ необходимо сопоставить с результатами теоретического расчета теплового режима данного блока, что и будет сделано в п. 6.3.
6.3 Теоретический расчет теплового режима системного блока ПЭВМ
Как было сказано п. 2, расчет теплового режима устройств ЭВМ заключается главным образом в определении по конструктивным данным тепловой модели температур нагретых зон (объем, в котором происходит рассеяние тепла) и поверхностей элементов. В ходе расчета определяют также температуру в других характерных зонах устройства (окружающего воздуха, корпуса и т.д.) и характеристики системы охлаждения.
При расчете тепловых режимов конструкций ЭВС реальную систему представляют в виде модели. Понятие тепловой модели было введено Г. Н. Дульневым [3]. Им же сформулировано основное требование, предъявляемое к тепловой модели: тепловая модель должна быть адекватна изучаемому явлению и реализуема математически.
Конструкция ЭВМ является системой многих тел с неравномерно распределенными источниками (элементами, выделяющими тепло) и стоками (- поглощающими) тепловой энергии. Ее температурное поле может иметь достаточно сложный характер, зависящий от распределения источников и стоков тепла, геометрии элементов конструкции и их теплофизических свойств. При построении тепловой модели упрощают рассматриваемые элементы конструкции и идеализируют протекающие в них тепловые процессы.
Один из способов упрощения – замена сложной по форме нагретой зоны элемента конструкции (например, субблока с разногабаритными комплектующими элементами, выделяющими неодинаковую тепловую энергию) прямоугольным параллелепипедом – эквивалентной нагретой зоной с одинаковой среднеповерхностной температурой и равномерно распределенным источником тепловой энергии. Такая замена выполняется на основании принципа усреднения [3].
В ряде случаев форму эквивалентной нагретой зоны определяют на сновании принципа местного влияния, который формулируется следующим образом: «любое местное возмущение температурного поля является локальным и не распространяется на отдаленные участки поля». Принцип суперпозиции температурных полей также используют при исследовании температурных режимов устройств ЭВМ для упрощения анализа сложных условий теплообмена и построения тепловой модели исследуемого объекта.
Рассчитаем тепловой режим блока, для которого проводились экспериментальные исследования (п. 6.2).
В исследуемом блоке используется принудительное воздушное охлаждение, следовательно, расчет теплового режима необходимо осуществить по соответствующей методике, представленной ниже.
Исходными данными являются размеры блока Iб1, Iб2,Iб3 (плоскость Iб1x Iб2 ориентирована перпендикулярно направлению продува, размер Iб3 – вдоль направления продува), рассеиваемая блоком мощность Рб, максимальная температура на входе блока Твх, рассеиваемая компонентом мощность Рк, его поверхность Sк и расстояние в направлении продува воздуха от места поступления в блок до компонента lп. к. , расход воздуха Gв, эскиз блока (в Приложении).
При расчете теплового режима в следующем порядке определяют:
Средний перегрев воздуха в блоке:
; (6.3.1)
площадь поперечного сечения блока, перпендикулярного направлению продува воздуха:
Sп.c. = lб1*lб2 ,(6.3.2)
Коэффициенты km1, km2, km3, km4 выбираются по графикам [2], поверхность нагретой зоны (НЗ) на основе эскиза, перегрев нагретой зоны:
; (6.3.3)
удельную мощность, рассеиваемую НЗ:
; (6.3.4)
удельную мощность, рассеиваемую компонентом:
; (6.3.5)
перегрев поверхности компонента:
; (6.3.6)
температуру воздуха на выходе из блока:
; (6.3.7)
перегрев окружающей компонент среды:
. (6.3.8)
Таким образом, учитывая технические характеристики исследуемого системного блока рассчитаем его тепловой режим по вышеприведенной методике.
Средний перегрев воздуха в блоке:
[0C];
площадь поперечного сечения блока, перпендикулярного направлению продува воздуха:
Sп.c. = 0,115•0,488=0,0561 [м2];
перегрев нагретой зоны:
[0С];
удельную мощность, рассеиваемую НЗ:
;
удельную мощность, рассеиваемую компонентами:
;
;
;
;
;
;
;
;
;
;
;
;
перегрев поверхности компонента:
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
[0С];
температуру воздуха на выходе из блока (примем Tвх=210С):
Твых=2×12,5+21=46 [0С]
значения перегревов окружающей компоненты среды приведены в таблице 6.3.1.
Таблица 6.3.1 – Рассчитанные значения перегревов окружающей компоненты среды
Рассчитываемый компонент | Температура перегрева среды, 0С |
ИМС К555ИР1 | 10.54 |
ИМС КР555РТ5 | 10.4 |
ИМС К555ИЕ5 | 12.6 |
ИМС КР531ЛА3 | 8.68 |
ИМС КР556РТ5 | 14.61 |
ИМС КР55ЛЕ1 | 11.66 |
ИМС К555ИЕ7 | 11,21 |
ИМС К555ЛА1 | 8,44 |
ИМС К555ТМ8 | 9,78 |
ИМС К555ИЕ12 | 12,66 |
ИМС К555ТМ2 | 11,96 |
ИМС К555ИД2 | 13,07 |
... источника меньше допустимого значения) и блок управления включает индикатор “Смените источник питания”. При восстановлении напряжения сети системы резервного электропитания опять переходит в режим нормальной работы. 2. Конструкторско-технологический раздел 2.1 Разработка печатной платы Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком ( ...
... . Во второй период жизненного цикла включается освоение изделия в промышленном производстве (ОСП). Практика показывает, что на этой стадии возникают и конструкторские изменения, и изменения в технологических процессах, и изменения уровня оснащенности производства специальными видами оснастки и оборудования. Точное соблюдение технологического процесса – одно из важнейших организационных условий ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
... Подставив значения, получим: . Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий. 3.1 Разработка принципиальных схем синтезатора Цифровой синтезатор частотно – модулированных сигналов позволяет формировать л.ч.м. – сигналы и предназначен для работы в составе л.ч.м. – ионозонда в качестве возбудителя передатчика. На принципиальной ...
0 комментариев