4. ОБЛІК НОРМАЛЬНИХ ПРОЦЕСІВ

4.1 Релаксаційний метод

У простій формі релаксаційного методу передбачається, що кожен механізм розсіяння характеризується часом релаксації, який для даної моди не залежить від населеності фононів у всіх інших модах. Якщо є декілька механізмів розсіяння, то швидкості , , ... складаються і сумарний час релаксації τ(х), визначається виразом

Цей вираз стає, звичайно, складнішим, якщо не користуватися спрощуючими припущеннями теорії Дебая про відсутність дисперсії і квадратичний закон для щільності мод: f(ω) ~ ω2.

Оскільки N-процеси самі по собі не приводять до встановлення рівноважного розподілу фононів, то вони не можуть входити в суму для τ(х) на тих же підставах, що і процеси, що ведуть до встановлення рівноваги (резистивне розсіяння). Проте ними не можна нехтувати, оскільки, перерозподіляючи енергію між модами, вони роблять відчутним для всіх мод наявність резистивних процесів розсіяння, залежних від частоти.

Для аналізу експериментальних даних по теплопровідності широко використовується розгляд Каллуея. Він припустив, що N-процеси переводять будь-який розподіл фононів, що відповідає деякому потоку тепла, в розподіл, визначуваний формулою (3.1), відповідний тому ж потоку тепла і далі вже не змінний внаслідок N-процесів. Час релаксації для таких процесів є τN (для простоти залежність часу релаксації від q, поляризації і температури не указується). Повна швидкість зміни N(q) дається тоді виразом

де у величину τR вносять внесок тільки процеси, що приводять до встановлення рівноважного розподілу N0(q). У моделі Дебая Каллуей, ввівши комбінований час релаксації , отримав наступний вираз для теплопровідності:

(4.1.1)

де

(4.1.1.а)

і

 (4.1.1.б)

Цей результат, як видно, знаходиться відповідно до твердження про те, що нормальні процеси впливають на теплопровідність, але трохи інакше, ніж чисто резистивні процеси. У формулу для ϰ1 нормальні процеси входять на тих же підставах, як і інші процеси, оскільки між ними не робиться ніякої відмінності у виразі для τС. Тому зазвичай вважається, що ϰ1 дає занижену оцінку теплопровідності, проте є другий член ϰ2, який декілька заповнює її «втрату».

Для пояснення експериментальних результатів часто необхідно користуватися повною формулою (4.1.1); обчислення, проте, дуже громіздкі, і корисно розглянути загальні результати, які виходять в трьох граничних випадках.

1) Випадок переважання резистивного розсіяння

Для кристала з великою кількістю дефектів всі моди сильно розсіваються унаслідок резистивних процесів; тоді для всіх мод τN >> τR , отже, τC ≈ τR. У такому разі ϰ2 << ϰ1 (якісно це можна зрозуміти, припустивши, що всі часи релаксації не залежать від частоти, тому при порівнянні ϰ1 та ϰ2 інтеграли скорочуються і ми маємо ϰ2/ ϰ1 = τRN << 1). Пізніше буде видно, що це порівняльно простий вираз придатний для аналізу експериментальних даних по теплопровідності не дуже ідеальних кристалів.

2) Випадок переважання N-процесів за наявності резистивного розсіяння


В цьому випадку час релаксації τC головним чином визначається N-процесами; тоді τR >> τN і τC ≈ τN. Звідси легко побачити, що ϰ2 >> ϰ1 (якісно це можна зрозуміти, припустивши незалежність часів релаксації від частоти, і отримати ϰ/ϰ1 = τRN >> 1). Для коефіцієнта теплопровідності тоді маємо

Перш за все дивно, що формула (4.1.2), яка визначає теплопровідність у разі переважання N-процесів, не містить τN. Проте N-процеси впливають на розподіл фононів і приводять його до форми (3.1). Коли N-процеси грають домінуючу роль, розподіл фононів стає «зміщеним» і не залежить від інтенсивності N-процесів. Тепловий опір виникає внаслідок резистивних процесів, що діють на цей розподіл.

Інший цікавий аспект формули (4.1.2) видно, якщо з її допомогою записати тепловий опір:


 (4.1.3)

Для певного кристала при заданій температурі знаменник виразу (4.1.3) постійний. Оскільки  – сума швидкостей розсіяння для всіх типів резистивних процесів, то видно, що , де Wi – тепловий опір, відповідний кожному резистивному процесу i, що діє окремо, але за умови переважання N-процесів. У загальному випадку тепловий опір неаддитивний, оскільки у формулі для ϰ1 швидкості релаксації складаються в знаменнику інтеграла (комбінований релаксаційний час міститься в чисельнику), а, крім того (за винятком розглянутого тут граничного випадку), формула для ϰ2 дуже складна і не приводить до такого простого результату.

Представляючи функції від ϰ, що входять в (4.1.3), через С(ϰ) і повну теплоємність С і проводячи прості арифметичні дії, запишемо вираз (4.1.3) у вигляді

(4.1.4.а)

Слід порівняти вираз (4.1.4.а) з виразом для теплопровідності, отриманим релаксаційним методом у відсутність N-процесів. В цьому випадку час релаксації кожної моди множиться на її внесок в теплоємність, а потім інтегрується по всіх модах для отримання теплопровідності. Якщо ж переважають N-процеси, то швидкість релаксації кожної моди множиться на її внесок в теплоємність і після інтеграції виходить повний тепловий опір. В останньому випадку квадрат теплоємності в знаменнику виразу (4.1.4.а) приводить до теплового опору, зворотного теплоємності, і до теплопровідності, пропорційній першому ступеню теплоємності.

Оскільки υτ = l. можна у вираз (4.1.4.а) ввести середню довжину вільного пробігу:

(4.1.4.б)

Варіаційний метод у разі переважання N-процесів дає той же результат, тобто вирази (4.1.4.а) і (4.1.4.б).

Існує серія експериментів, в яких досліджувався вплив дефектів, причому для пояснення їх можна прямо застосувати розглянуту тут теорію.

У одному випадку метод Каллуея не знаходить застосування. Якщо резистивне розсіяння має місце тільки на межах кристала, а N-процеси відбуваються достатньо часто, то у виразі (4.1.4.а) не можна представляти значення υ/D для  (D – відповідний лінійний розмір кристала). Якщо проте це зробити, то отримаємо

Останній вираз представляє якраз опір внаслідок розсіяння на межах у відсутність N-процесів, а отже, виходить, що N-процеси в даному випадку не грають ніякої ролі. Насправді для цієї спеціальної комбінації розсіяння теплопровідність перевищує величину теплопровідності, отриману при розсіянні на межах у відсутність N-процесів, в число разів, рівне швидкості релаксації для N-процесів.

3) Випадок наявності тільки N-процесів

Оскільки на практиці досяжні тільки два попередні граничні випадки, тут ми покажемо, що в даному випадку результат виходить правдоподібним. Припустимо, що резистивні процеси відсутні зовсім, тому τ → ∞ і τС = τN. Знаменник ϰ2 тоді обертається на нуль, і ϰ2 → ∞, тобто отримуємо нескінченну теплопровідність, що і потрібно було довести.


Информация о работе «Вивчення властивостей твердого тіла»
Раздел: Физика
Количество знаков с пробелами: 38116
Количество таблиц: 2
Количество изображений: 12

Похожие работы

Скачать
195128
11
21

... ів на установці ЭМР-100 у режимі дифракції на відображення з поверхні тертя при напрузі, яка з ковзає , 100 кв. 2.3 Математична модель процесів тертя й зношування покрити по пружно - пластичній основі На підставі [12-21] простір існування властивостей детонаційно-газових покриттів можна описати, як: Ω (Rфм  Rмф  Rфт  Rі) З обліком першого обмеження: Ω  Ψ де Ψ - простір ...

Скачать
103760
1
2

... класах проходить по-різному. Необхідна її адаптація до конкретних умов проведення [20]. РОЗДІЛ 3. МЕТОДИЧНІ ЗАБЕЗПЕЧЕННЯ ПРОВЕДЕННЯ УРОКІВ З ТЕМИ „МЕТАЛИ” 3.1 Тематичне планування теми „Метали” Тема „Метали” вивчається в 9 класі в середині другого семестру навчального року, на вивчення теми передбачено програмою 22 години. Тематичне планування представлено в табл. 3.1. Таблиця ...

Скачать
143012
16
28

... сполуки”, а також зорієнтовані на їх загальний розвиток. Об’єкт дослідження: процес вивчення теми “Залізо та його сполуки” у класах з поглибленим вивченням хімії,мтворчо та інтелектуально обдарованими учнями. Предмет дослідження: навчання особливості організації та змісту урочної навчальної діяльності учнів. Дане педагогічне дослідження має переваги над існуючою традиційною технологією, яка ...

Скачать
135893
7
2

... ", з’ясовано, що у процесі вивчення молодшими школярами рослин необхідно проводити досліди, спостереження, практичні роботи.   2.2 Методика вивчення молодшими школярами рослин на уроках природознавства у 3 класі Розробляючи методику вивчення молодшими школярами рослин на уроках природознавства, особливу увагу ми приділяли визначенню цілей уроку, добору змісту, доцільних методів і засобів ...

0 комментариев


Наверх