3.2 Варіаційний метод
Якщо розсіяння відбувається як внаслідок резистивних процесів, так і внаслідок N-процесів, чисельник варіаційного виразу для теплового опору складається з сум або інтегралів, відповідних кожному механізму розсіяння; для двох випадків маємо два вирази. Хоча при тих обставинах, яким відповідають чисельники цих виразів, можна точно отримати 1/ϰ = О, проте не можна написати простий вираз для теплового опору в загальному випадку, коли діють спільно декілька типів резестивного розсіяння, а також існують (або не існують) N-процеси. Ідея розгляду буде продемонстрована на прикладі методу Шерда і Займана для обчислення теплопровідності при розсіянні на точкових дефектах і наявності N-процесів. Розгляд приводить до тих же результатів, що і метод Каллуея.
1) Резистивні процеси і N-процеси однаково важливі
Для ілюстрації варіаційного розгляду в цьому загальному випадку передбачається, що резистивне розсіяння відбувається тільки на точкових дефектах; тим самим зменшується число членів, які потрібно враховувати. Це припущення було використане Шердом і Займаном для пояснення експериментальних результатів по розсіянню фононів ізотопічними «домішками».
Для випадку, коли пружне розсіяння на точкових дефектах відбувається одночасно з N-процесами, варіаційний вираз для теплового опору має вигляд
(4.2.1)
де функція (q) повинна бути вибрана так, щоб мінімізувати цей опір.
Раніше було показано, що можна вибрати такий простий вид функції (q), при якому перший або другий член в чисельнику звертається в нуль. Проте тепер при будь-якому виді (q) один із членів у виразі (4.2.1) істотно відрізнятиметься від нуля. Дуже важко знайти точний вираз для (q), який привів би до мінімального можливого значення W. Тому Шерд і Займан узяли правдоподібну комбінацію двох виразів для (q). Оскільки швидкість релаксації при розсіянні на точкових дефектах стрімко збільшується із зростанням q, вони припустили, що починаючи з деякого значення q розподіл фононів визначається дефектами та N-процесами, що вносять внесок в (q) незалежно один від одного. Для малих q точкові дефекти самі по собі приводять до сильного відхилення від рівноважного розподілу, причому передбачалося, що їх внесок в (q) відповідає граничному значенню. Пробна функція, таким чином, була вибрана різною для двох інтервалів q.
Величина ε вважалася залежною від концентрації дефектів, але не залежною від температури. Шляхом варіювання коефіцієнтів а0 і а4, а також величини ε знаходилося мінімальне значення теплового опору, який визначається виразом (4.2.1).
Можна очікувати, що інтервал значень q, в якому на фононний розподіл істотно впливають точкові дефекти, збільшується при зростанні швидкості релаксації за рахунок розсіяння на точкових дефектах. При цьому значення q0 і ε повинні зменшуватися. Обчислення Шерда і Займана показали, що для малих концентрацій ізотопічних «домішок» у фториді літію (теорія була спочатку розвинена для пояснення експериментів на таких кристалах) ε ≈ 3, але для кристалів із значним розсіянням на точкових дефектах ε < 0,5.
У своїй першій роботі по застосуванню простого релаксаційного методу Клеменс враховував N-процеси, припускаючи, що вони усувають розбіжність ефективного часу релаксації при малих q; час релаксації для фононів при q < kвT/ħυ рівний часу релаксації при q = kвT/ħυ = q0. Теплопровідність визначається виразами з урахуванням цієї зміни, так що інтеграл розбивається на дві частини: для значень q від 0 до q0 час релаксації постійний, але від q0 до qмакс він залежить від q звичайним способом.
Хоча може здатися, що процедура «обрізання», введена Клеменсом, неістотно відрізняється від методу Шерда і Займана, чисельні результати для багатьох випадків досить різні. Якщо переважають N-процеси, то рівноважний розподіл фононів порушується в широкій області q і перший член в чисельнику виразу (4.2.1) стає великим. У межі, коли розподіл фононів головним чином визначається N-процесами, тепловий опір, обумовлений точковими дефектами, в 55 разів більше, ніж той, що дається формулою Клеменса, яка не враховує впливу N-процесів на розподіл фононів при q > kвT/ħυ. При концентрації точкових дефектів, відповідній значенню ε = 3, тепловий опір в 20 разів більше значення, яке обчислюється формулою Клеменса. З іншого боку, коли точкові дефекти значно важливіші і визначають розподіл навіть при значеннях q < ½ kвT/ħυ, є широка область фононів, для якої внеском першого члена у виразі (4.2.1) можна знехтувати, і тоді опір тільки трохи більший половини значення Клеменса.
2) N-процеси домінують за наявності резистивних процесів
У цьому граничному випадку передбачається, що розподіл фононів встановлюється тільки за рахунок N-процесів, а розсіяння на дефектах не міняє цього розподілу. У варіаційний вираз N-процеси, таким чином, не дають внеску. Для даного виду (q) знаменник виразу можна записати в простій формі. Через те що
і
Знаменник має вигляд
де величина |u| прийнята рівною 1, оскільки u2 міститься і в чисельнику, і в знаменнику. Коли має місце ізотропне розсіяння і вірогідність P (q, q') залежить тільки від відносної орієнтації q та q', чисельник також набуває простій вигляд, і, замінюючи суму інтегруванням, його можна записати у такому вигляді
Тепловий опір тоді визначається формулою
яка співпадає з виразом Каллуея в тій же межі переважання N-процесів.
Слід відмітити, що якщо τ(q) ~ q-4, як у разі точкових дефектів, то й вираз для теплопровідності залишається кінцевим, оскільки інтеграл має
Вигляд
і сходиться на обох межах. Якщо розсіяння менш сильно залежить від q, наприклад τ(q) ~ q-1, то простий релаксаційний метод дає кінцеву теплопровідність; збільшення часу релаксації із зменшенням q не врівноважує зменшення внеску цих мод в теплопровідність, яка визначається енергією фононів і щільністю станів, пропорційною q2. Вираз для ϰ, отриманий простим релаксаційним методом, містить тоді
тоді як варіаційний вираз або формула Каллуея при домінуванні N-процесів містить
Всі ці інтеграли досягають граничних значень при дуже малих х, і відношення χрел/χNдом стає рівним 1,3. Як видно, резистивне розсіяння все ще грає важливу роль для малих значень q, але внесок від домінуючих N-процесів сильно не збільшує теплового опору.
... ів на установці ЭМР-100 у режимі дифракції на відображення з поверхні тертя при напрузі, яка з ковзає , 100 кв. 2.3 Математична модель процесів тертя й зношування покрити по пружно - пластичній основі На підставі [12-21] простір існування властивостей детонаційно-газових покриттів можна описати, як: Ω (Rфм Rмф Rфт Rі) З обліком першого обмеження: Ω Ψ де Ψ - простір ...
... класах проходить по-різному. Необхідна її адаптація до конкретних умов проведення [20]. РОЗДІЛ 3. МЕТОДИЧНІ ЗАБЕЗПЕЧЕННЯ ПРОВЕДЕННЯ УРОКІВ З ТЕМИ „МЕТАЛИ” 3.1 Тематичне планування теми „Метали” Тема „Метали” вивчається в 9 класі в середині другого семестру навчального року, на вивчення теми передбачено програмою 22 години. Тематичне планування представлено в табл. 3.1. Таблиця ...
... сполуки”, а також зорієнтовані на їх загальний розвиток. Об’єкт дослідження: процес вивчення теми “Залізо та його сполуки” у класах з поглибленим вивченням хімії,мтворчо та інтелектуально обдарованими учнями. Предмет дослідження: навчання особливості організації та змісту урочної навчальної діяльності учнів. Дане педагогічне дослідження має переваги над існуючою традиційною технологією, яка ...
... ", з’ясовано, що у процесі вивчення молодшими школярами рослин необхідно проводити досліди, спостереження, практичні роботи. 2.2 Методика вивчення молодшими школярами рослин на уроках природознавства у 3 класі Розробляючи методику вивчення молодшими школярами рослин на уроках природознавства, особливу увагу ми приділяли визначенню цілей уроку, добору змісту, доцільних методів і засобів ...
0 комментариев