СОДЕРЖАНИЕ
Предисловие
Обозначения
1 Стационарная задача теплопроводности
1.1 Общее понятие термического сопротивления
1.2 Прямоугольные координаты
1.3 Цилиндрические координаты
1.4 Сферические координаты
1.5 Суммарный коэффициент теплопередачи
2 Вынужденный конвективный теплообмен
2.1 Плоская стенка
2.2 Одиночный цилиндр и сфера
2.3 Расчёт теплофизических характеристик смеси газов
2.4 Теплообмен при фазовых превращениях
3 Теплообмен излучением и сложный теплообмен
3.1 Радиационные свойства газов
3.2 Сложный теплообмен
3.3 Указания к выполнению курсовой работы
Выводы.
Рекомендуемая литература
ВВЕДЕНИЕ
В условиях интенсификации технологических процессов, разработки и освоения новой техники существенное значение получают мероприятия направленные на обеспечение функциональной способности конструктивных элементов, работающих в области высоких температур и интенсивных тепловых нагрузок. Конструктивные элементы, работающие в таких условиях, требуют, как правило, эффективных средств тепловой защиты. Одной из наиболее эффективных систем тепловой защиты является испарительное охлаждение защищаемых элементов. Повышение эффективности испарительного охлаждения по сравнению с чисто конвективным связано с фазовым превращением охлаждающей среды в охлаждающем контуре, которое идёт с большим поглощением тепла и практически при постоянной температуре, близкой к температуре насыщения. Расчёт параметров испарительного охлаждения конструктивных элементов связан с целым комплексов расчётов, включающих:
расчёт состава атмосферы в рабочем пространстве агрегата;
расчёт теплофизических и радиационно-оптических характеристик атмосферы;
расчёт характеристик радиационно-конвективного теплообмена охлаждаемого элемента;
расчёт теплопередачи через рабочие поверхности охлаждаемого элемента;
определение режима фазового перехода при испарительном охлаждении.
Решение такой комплексной задачи осложняется нелинейностью её постановки: "внутренней" и "внешней". Внутренняя нелинейность постановки определяется зависимостью теплофизических характеристик материала конструктивных элементов от температуры. "Внешняя" – наличием в качестве составляющего – радиационного теплообмена. Нелинейные постановки задач характерны выражением искомых функций в неявном виде, поэтому решение таких задач связано, как правило, с организацией некоторого итерационного процесса, позволяющего найти приближенное решение с заданной точностью. Рассмотрим основные теоретические положения, связанные с расчётом испарительного охлаждения конструктивных элементов, находящихся в условиях радиационно – конвективного теплообмена.
ОБОЗНАЧЕНИЯ
а – поглощательная способность;
а – коэффициент температуропроводности, м2/с;
А, S – площадь (поперечного сечения поверхности), м2;
Ср – удельная теплоёмкость при постоянном давлении, Дж/(кг.К);
D – диаметр, м;
d– коэффициент диффузии, м2/с;
Е – плотность потока собственного излучения, Вт/м2;
g – ускорение свободного падения, м/с2;
a – коэффициент конвективной теплоотдачи, Вт/(м2.К);
J – интенсивность излучения,
sо – постоянная Больцмана, Вт/(м2.К4);
l – коэффициент теплопроводности, Вт/(м.К);
L, l – длина, линейный размер, м;
m – масса, кг;
– плотность потока массы, кг/(м2.с);
– массовый расход, кг/с;
М – молекулярный вес,
m – коэффициент динамической вязкости, кг/(м.с);
n – коэффициент кинематической вязкости, м2/с;
Р – периметр, м;
р – удельное давление (давление), Н/м2;
Q – количество тепла, Дж;
– тепловой поток, Дж/с;
q – плотность теплового потока, Вт/м2;
qv – объёмное тепловыделение (объёмный источник тепла), Вт/м3;
r – радиус, м;
R – газовая постоянная,
R0 – универсальная постоянная,
R – термическое сопротивление, К/Вт;
S – формфактор теплопроводности,
t – время, с;
t, T – температура, 0С, К;
в – толщина, м;
w – скорость, м/с;
к – коэффициент теплопередачи, Вт/(м2.К);
u – удельный объём, м3/кг;
V – объём, м3;
x, y, z
r, j, z координаты в декартовой, цилиндрической и сферической системах, м;
r, j, q
b - термический коэффициент объёмного расширения, 1/К;
e - излучательная способность (степень черноты); r - плотность, кг/м3.
... івник стає одним з основних теплосприймальних елементів котельного агрегату. Для виготовлення труб-пакетів пароперегрівника, що працюють у дуже важких температурних умовах, застосовуються дорогі леговані сталі. За видом теплообміну пароперегрівники поділяються на конвективні, напіврадіаційні і радіаційні; за розміщенням змійовиків – на вертикальні і горизонтальні. У старих конструкціях котлів ...
... на велику витрату металу на зовнішні труби, що не беруть участь в теплообміні; - трудність очищення міжтрубного простору. 2. Місце і призначення проектованого апарата в технологічній схемі Теплообмінник типу «труба в трубі» використовується в процесі згущення продуктів, що є підготовчим етапом перед висушуванням бульйону. Процес згущення протікає наступним чином: Бульйон всмоктується у вирі ...
... , Х17Н12М2Т. Для виготовлення кришок застосовується двошарові сталі Ст3+10Х18Н10Т та 20К+Х17Н13М2Т та ін. Для виготовлення прокладок застосовують гуму, пароніт, фторопласт, азбестовий картон та ін. Спіральні теплообмінні апарати для рідини складаються із корпуса з тупиковими каналами, двох плоских кришок по торцям із прокладками, чотирьох штуцерів для введення та виведення теплообмінювальних ...
... ее установленную мощность: (37) Рассчитав по формуле (37) количество изделий, необходимо сравнить получающуюся при этом продолжительность нагрева изделий [по формуле (35)] с допустимой по технологии. 3. Особенности нагрева длинномерных изделий в электрических конвекционных печах периодического действия Большое количество различных длинномерных полуфабрикатов (профили, трубы, листы и т. ...
0 комментариев