1. СТАЦИОНАРНАЯ ЗАДАЧА ТЕПЛОПРОВОДНОСТИ

Применим уравнение теплопроводности для решения задач, в которых температура зависит только от одной линейной координаты. Примем, что в прямоугольной системе координат температура будет зависеть только от x, а в цилиндрической и сферической системах координат—только от радиуса. Предполагается, что коэффициент теплопроводности является постоянной величиной, а тепловыделение отсутствует.

Применим общую методику решения, состоящую из двух этапов. На первом этапе из решения соответствующего упрощенного уравнения теплопроводности находится распределение температуры. С этой целью отыскивается аналитическое решение дифференциального уравнения второго порядка. После того как решение дифференциального уравнения записано в общем виде, с помощью двух граничных условий определяются две постоянные интегрирования. На втором этапе с помощью закона Фурье вычисляется кондуктивный тепловой поток через твердое тело.

1.1 Общее понятие термического сопротивления

Математическое выражение закона Гука имеет вид:

или после разделения переменных

,

интегрируя в пределах изменения пространственной координаты и в соответствующем температурном интервале, получаем

 или

Выражение

называется среднеинтегральным коэффициентом теплопроводности в интервале . При линейной зависимости

При постоянном:

Таким образом, имеем

Сравнивая полученное уравнение с выражением закона Ома

,

получаем уравнение, определяющее термическое сопротивление теплопроводности в общем случае

 (1.0)

Для получения выражения, определяющего термическое сопротивление конвективного теплообмена, рассмотрим закон Ньютона-Рихмана

То есть термическое сопротивление конвективного теплообмена определится выражением

 (1.01)

1.2 Прямоугольные координаты

Стационарное одномерное распределение температуры в плоской прямоугольной стенке при отсутствии внутреннего тепловыделения описывается упрощенным уравнением теплопроводности

d2T/dx2 = 0.

Решение этого дифференциального уравнения с использованием двух постоянных интегрирования C1 и С2 имеет вид:

 

Т (х) = С1x + С2.

Значения этих постоянных можно найти, если заданы два граничных условия. Предположим, что в качестве этих условий заданы температуры на двух поверхностях стенки (рисунке 1.1): Т(0)=T1 и T(b)=T2. Применяя эти граничные условия, получаем следующее распределение безразмерной температуры в стенке:

 (1.1)

Следовательно, температура изменяется линейно по x. Тепловой поток через стенку определяется законом Фурье:

 (1.2)

Тепловой поток на единицу площади называется плотностью теплового потока и обозначается q. Для плоской стенки

Если записать соотношение (1.2) в форме закона Ома:


 (1.3)

то термическое сопротивление плоской стенки выражается формулой

. (1.4)

Используя общее понятие термического сопротивления теплопроводности, (1.0), получаем аналогичное выражение

Кондуктивный тепловой поток через плоскую стенку обусловлен перепадом температур поперек стенки, и его распространению противодействует термическое сопротивление, пропорциональное толщине стенки и обратно пропорциональное коэффициенту теплопроводности стенки и площади ее поперечного сечения.

Если кондуктивный перенос тепла осуществляется через составную (многослойную) плоскую стенку, распределение температуры и тепловой поток можно найти, предполагая, что тепло течет по эквивалентной тепловой цепи, представляющей сумму термических сопротивлений, соответствующих отдельным слоям из различных материалов.

В качестве примера тепловой цепи рассмотрим плоскую стенку (индекс 1), покрытую двумя слоями различных изоляционных материалов (индексы 2 и 3). Геометрия задачи показана на рисунке 1.2. Один и тот же тепловой поток проходит последовательно через каждое термическое сопротивление, и, следовательно, тепловая цепь состоит из последовательно соединенных термических сопротивлений. Если известны свойства всех трех материалов, заданы геометрические характеристики и температуры на двух внешних поверхностях, тепловой поток можно найти с помощью соотношения, аналогичного закону Ома:

 (1.5)

Поскольку тепловой поток через многослойную стенку известен, можно найти температуры на поверхностях раздела материалов, применяя закон Ома для каждого слоя. Например, температуру Тx на поверхности раздела материалов 1 и 2 можно рассчитать по формуле

 (1.6)

Часто в многослойных стенках слои материалов расположены так, что тепловой поток через них течет скорее параллельно, чем последовательно. В таком случае в тепловую цепь включаются участки из параллельно соединенных термических сопротивлений.

Тепловой поток определяется по формуле

 (1.7)

Отдельные термические сопротивления выражаются соотношением


.

Промежуточные температуры типа ТX можно найти из уравнения (1.6).

Предполагается, что при параллельном соединении термических сопротивлений R2 и R3 тепловой поток остается одномерным; если же сопротивления R2 и R3 заметно отличаются друг от друга, могут стать существенными двумерные эффекты.


Информация о работе «Виды теплообмена»
Раздел: Физика
Количество знаков с пробелами: 42927
Количество таблиц: 5
Количество изображений: 24

Похожие работы

Скачать
99913
0
0

... івник стає одним з основних теплосприймальних елементів котельного агрегату. Для виготовлення труб-пакетів пароперегрівника, що працюють у дуже важких температурних умовах, застосовуються дорогі леговані сталі. За видом теплообміну пароперегрівники поділяються на конвективні, напіврадіаційні і радіаційні; за розміщенням змійовиків – на вертикальні і горизонтальні. У старих конструкціях котлів ...

Скачать
19216
0
0

... на велику витрату металу на зовнішні труби, що не беруть участь в теплообміні; - трудність очищення міжтрубного простору. 2. Місце і призначення проектованого апарата в технологічній схемі Теплообмінник типу «труба в трубі» використовується в процесі згущення продуктів, що є підготовчим етапом перед висушуванням бульйону. Процес згущення протікає наступним чином: Бульйон всмоктується у вирі ...

Скачать
12809
4
4

... , Х17Н12М2Т. Для виготовлення кришок застосовується двошарові сталі Ст3+10Х18Н10Т та 20К+Х17Н13М2Т та ін. Для виготовлення прокладок застосовують гуму, пароніт, фторопласт, азбестовий картон та ін. Спіральні теплообмінні апарати для рідини складаються із корпуса з тупиковими каналами, двох плоских кришок по торцям із прокладками, чотирьох штуцерів для введення та виведення теплообмінювальних ...

Скачать
20398
0
5

... ее установленную мощность: (37) Рассчитав по формуле (37) количество изделий, необходимо сравнить получающуюся при этом продолжительность нагрева изделий [по формуле (35)] с допустимой по технологии. 3. Особенности нагрева длинномерных изделий в электрических конвекционных печах периодического действия Большое количество различных длинномерных полуфабрикатов (профили, трубы, листы и т. ...

0 комментариев


Наверх