1.   ВАХ МЖ имеет вид замкнутой кривой (сильно втянутый овал), расположенной в первом и третьем квадрантах координатной плоскости.

2.   Наблюдалась прямая зависимость между скоростью изменения напряжения и формой петли ВАХ ( см. рис. IV.1.3), при этом угол наклона ( т.е. сопротивление МЖ не меняется.

3.   При увеличении подаваемого напряжения (Um) угол наклона петли не менялся, изменялась форма петли, увеличивалась её площадь (см. рис. 4.1.4). Все измерения проводились при комнатной температуре Т=294 К.

4.   I0 - ток соответствующий U=0 на ВАХ- остаточный ток.

U0 - напряжение , при котором I=0 на ВАХ - запирающее напряжение.

Построены зависимости:

- I0(U*) при Um = const (рис. IV.1.5)

- I0(Um) при U* = const (рис. IV.1.6)

- U0(U*) при Um = const (рис. IV.1.7)

- U0(Um) при U* = const (рис. IV.1 8)

Данные занесены в таблицу 1.

5.   По ВАХ была вычислена удельная электропроводность МЖ:

; , и построена зависимость при Um = const (рис. IV.1.9) и при U* = const (рис. IV.1.10)

Были сделаны следующие выводы:

1.   Конечная часть ВАХ указывает на нарушение закона Ома.

2.   Большая полуось эллипса зависит от U*. Чем больше U*, тем меньше большая полуось. Чем больше U* , тем больше I0.

3.   I0 увеличивается с ростом Um.

4.   Чем больше U* , тем больше напряжение деполяризации U0 и I0.

5.   С ростом Um увеличивается U0, т.е. поляризационные эффекты возрастают с ростом Um.

6.   ВАХ имеет линейный участок (для s); значение s от U* не зависит.

7.   Площадь S, ограниченная кривой ВАХ, характеризует потери на переориентацию дрейфа; эта площадь зависит от U* : чем больше темп, тем больше S.

Таблица 1.

Зависимость ВАХ от величины напряжения подаваемого на ячейку (Um)

Период вращения: 45 с. 18 с. 2,5 с.

Um, В

2

6

8

10

2

6

8

10

2

6

8

 

Rx

140 кОм

140 кОм

1 МОм

1 МОм

 

 

 

 

 

 

 

 

U*

0,17

 

0,53

0,71

0,88

0,4

1,3

1,7

2,2

3,2

9,6

12,8

 

Iоб

´10-7 А

4,19

2,33

5,81

5,58

9,53

17,91

16,28

15,58

9,53

18,4

16,98

 

I0, В

1,17

 

4,81

4,81

4,58

5,47

10,66

12,28

5,08

5,47

12,4

20,9

 

U0, В

0,075

0,1

 

0,1

0,1

0,21

0,4

0,4

1,05

0,21

0,43

0,4

 

s,

´10-10

5,93

6,25

6,25

5,94

3,39

3,46

3,9

3,62

3,39

3,7

3,62

 

 

2. Влияние температуры на ВАХ МЖ.

МЖ в КЯ нагревалась до следующих температур : 294К, 305К, 315К.

Напряжение питания Um=5В.

Получены следующие результаты:

1.   Угол наклона кривой не меняется .

2.   Меняется, но незначительно, форма петли (рис. IV.1.11).

Были построены следующие зависимости:

U0(T) при U* = const (рис. IV.1.12)

I0(T) при U* = const (рис. IV.1.13)

s(T) при U* = const (рис. IV.1.14).

Данные занесены в таблицу 2.

Влияние температуры на ВАХ МЖ оказалось сложным, не трактуемым однозначно. Можно говорить лишь о качественных изменениях:

 U0 с ростом температуры увеличивается незначительно.

 I0 с ростом температуры увеличивается незначительно.

s с ростом температуры монотонно возрастает.

Таблица 2. Зависимость ВАХ от температуры.

Т, К

294 305 315

t, с

45 14 2,5 45 14 2,5 45 14 2,5

U*, В/с

0,44 1,42 8 0,44 1,42 8 0,44 1,42 8

U0, В

0,025 0,02 0,19 0,075 0,07 0,02 0,044 0,036 0,21

I0

´10-7, А

2 0,83 1,18 4,01 1,0 2,0 2,62 2,06 2,5

s

´10-10

5,2 5,39 0,1 6,95 6,85 1,3 7,74 7,44 1,54

IV.3. Исследование разряда и саморазряда КЯ с МЖ.

Аккумуляция электрического заряда


К электродам КЯ сносятся магнитные частицы следующими механизмами переноса: кулоновскими силами напрямую и кулоновскими силами опосредованно через внутреннее трение. В этом заключается смысл электрофореза. Благодаря очень малой подвижности магнитных частиц, они должны задерживаться у электродов некоторое время и удерживать электрический заряды, так или иначе связанные с магнитными частицами. Другие заряды, не связанные с массивными частицами ( комплексами), довольно скоро релаксируют. Более того, скопление магнитных и других частиц у электродов могут привести к гистерезисным эффектам: магнитному, электрическому, кинетическому. Следствием этого остаточного после действенного явления становится накопление между электродами некоторой разности потенциалов. Эта разность потенциалов была обнаружена экспериментально на установке.

Рис. IV. 3. 1

Восходящую ветвь кривой разряда (рис. IV.3.6) следует отнести на счет времени срабатывания прибора и ГП. Поэтому можно считать ток разряда может быть аппроксимирован по закону , где характерные для МЖ.

Граничные условия не противоречат экспериментальному виду кривой разряда: при t=0 I=I0 , при t=¥ I=0, что соответствует поведению экспериментального хода кривой Ic c учетом последующей экстраполяции этого хода к t=0.

Прологарифмируем

,

I0 , a могут быть определены или методом наименьших квадратов с оценкой погрешности аппроксимации, или по графику  сглаженному к прямой.

Очевидно, что

0,43 - модуль перехода от натуральных логарифмов к десятичным;

2,3 - модуль перехода от десятичных логарифмов к натуральным.

Определение электрофизических параметров МЖ по разрядной характеристике

Эксперимент поводился с плоскопараллельной ячейкой, которая имеет параметры:

глубина ячейки h= 0,8 мм; диаметр ячейки 28,1 мм; электроды медные.

На ячейку подавалось напряжение 5В в течение 15 сек., затем ячейка разряжалась на ГП. В результате была получена следующая зависимость тока разряда от времени (см. Рис. IV.3.4.). так как ГП регистрирует изменение напряжения , то нужно произвести пересчет полученных результатов в единицы силы тока.

Известно, что внутреннее сопротивление ГП равно 0,93 МОм, тогда коэффициент пересчета равен

 

Тогда из графика имеем, что максимальное значение разрядного тока Imp соответствующее разности потенциалов U0= 0,169В равно I= 18,64×10-8 А. При этом разряд МЖ происходит по экспоненциальному закону  , где t - постоянная времени разряда или время электрической релаксации дрейфа.

Время электрической релаксации дрейфа t - промежуток времени, за который ток заряда уменьшится в e раз. Его значение можно определить по графику. В данном случае t= 35 с.

Количество электричества, стекающего с электродов на нагрузку, можно определить следующим образом

По определению электрической ёмкости

тогда из t=RC можно определить электрическое сопротивление МЖ.

проводимость можно найти как величину обратную сопротивлению

Энергию, аккумулированную в ячейке с МЖ, найдем по формуле

Число носителей, участвующих в переносе заряда можно определить следующим образом .

пусть все носители однозарядны, тогда их полное число равно

Исходя из того, что МЖ нейтральная, числа N+ и N - и концентрация n+ и n - должны быть равны: N+= N - и n+= n-. Заряды обоих знаков движутся в противоположные стороны, это равносильно тому, что полное число ионов одного знака при том же заряде равно 2N . Тогда , где q = e заряд иона (e=1,6×10—19 Кл).

Концентрацию носителей найдём по формуле:

, (8)

 - объём КЯ ,  - площадь КЯ.

Подставив числовые значения , найдём

,

Подвижность носителей заряда определим исходя из следующих рассуждений.

Подвижность иона  , где v - скорость дрейфа , E - напряженность электрического поля. Связь напряженности и потенциала поля определяется соотношением

(9)

подвижность можно определить по плотности тока, т. к. известно, что

(10)

q - заряд носителя

n - концентрация

m - подвижность

E - напряженность электрического поля.

Предположим, что q+ =q -=q, n+ =n -=n и m+=m -=m, тогда плотность тока

Из (10) имеем, что , или

Тогда подвижность

(11)

 r - среднее удельное сопротивление, которое можно найти, т. к. Известно сопротивление МЖ и геометрические размеры КЯ.

произведя соответствующие расчеты, получим

Значение подвижности, найденное таким образом, является оценочным, т.к. в МЖ имеется несколько типов носителей заряда: ионы, комплексы молекул-ионов и заряженные частицы магнетита.

Поскольку

С другой стороны , если считать, что q =const, n0 =const, m0=const, что возможно при неизменных условиях t = const, E=0, то

- напряженность внутреннего поля.

Таким образом, внутреннее электрическое поле , образованное рассредоточенными электрофорезом носителями заряда, изменяется как и ток по экспоненциальному закону.

Проведенные исследования показывают, что

*         КЯ с МЖ не является простым конденсатором;

*         в ячейке с аккумулируется заряд;

*         процесс аккумуляции заряда связан со специфичностью МЖ.

К основным специфическим свойствам МЖ относятся:

        текучесть;

       наличие массивных малоподвижных носителей заряда;

       сильные вязкостные и электромагнитные взаимодействия;

       большое время t заполнителя (МЖ).

ОЦЕНИМ ПОГРЕШНОСТЬ ИЗМЕРЕНИЙ.

При определении величины заряда, накопляемого МЖ в КЯ применялась формула

в которой I0 и t были найдены экспериментально с помощью ГП.

Известно, что

Прологарифмируем полученное выражение

тогда относительная погрешность при определении заряда будет равна

где  - относительная погрешность в определении силы тока,

- относительная погрешность в определении времени.

При определении концентрации использовалась формула

 

Относительная погрешность в данном случае

Глубина и диаметр ячейки измерялись штангенциркулем с ценой деления 0,1 мм. Абсолютная погрешность измерений составила , тогда относительные погрешности при определении глубины h и диаметра d будут равны соответственно

 

тогда .

При определении подвижности применялась формула

тогда относительная погрешность

т.к. , то

относительная погрешность при определении сопротивления  известна из инструкции моста, которым было измерено сопротивление.

Таким образом,.


Исследование разрядной характеристики МЖ.

Для исследований применялась схема (рис. IV.3.5).

ИП- источник питания ИЭПП-2;

КЯ - кондуктометрическая ячейка

ДП - двухполюсный переключатель;

ГП - графопостроитель.

В положении 1 переключателя ДП от источника питания через ячейку в течение времени заряда tз пропускается ток. Затем ДП переводился в положение 2. При этом через ГП при отсутствии источника питания по цепи течет ток разряда, начинающийся с пикового значения Imp и достигающий нуля через несколько секунд по кривой, напоминающей кривую разряда конденсатора. В записи кривая имеет вид показанный на рис. IV.3.6.

Эксперимент проводился в следующих направлениях. Исследовалось:

1)  влияние продолжительности заряда (tз ) при заданном Uз на максимум величины Ump , достигнутый при заряде;

2)  влияние величины зарядного напряжения Uз на Imp;

3)  влияние времени саморазряда ячейки на ход кривой;

4)  влияние температуры на процесс заряда и последующего разряда (на t и Imp);

5)  влияние температуры на саморазряд и последующий разряд на внешнюю нагрузку (на t, tср, Im p);

6)  сопоставление кривых разряда с кривыми саморазряда.

Были получены следующие результаты.

 

1. Влияние продолжительности заряда при заданном Uз на максимум величины Ump.

Для МЖ установлено, что «насыщение» получаемого остаточного напряжения на КЯ практически завершается к концу 4-й секунды. Возникает вопрос о возможностях данной жидкости к накоплению остаточного заряда . Была поставлена серия экспериментов. На КЯ, заполненную то же МЖ, подавались разные напряжения и осуществлялся заряд КЯ в течение какого-то времени, достаточного для достижения насыщения. Была построена кривая, показывающая, что увеличение продолжительности заряда не увеличивает пикового значения Ump . Выяснили, что при увеличении Uз , Ump увеличивается , но не достигает значения Uз. Так при Uз=13В, Ump=0,138В, т.е. Ump<<Uз.

2. Влияние величины зарядного напряжения на Imp.

При увеличении Uз увеличивается площадь под кривой (рис. IV.3.7). Т.е. увеличивается количество электричества, накопленного ячейкой, что очевидно. Из эксперимента были вычислены следующие параметры: Q, t, R.

Все данные приведены в таблице 3.

Были построены зависимости:

t(Uз) - рис. IV.3.8

Q(Uз) - рис. IV.3.9

С ростом Uз увеличивается время t, с которым можно связать время релаксации, но считать их равными нельзя.

Таблица 3.

Влияние величины заряжающего напряжения на Imp.

tзар = 60 сек.

Uзар , В

5 8 13

Im p´10-8 A

76,85 83,52 88,74

Um p, В

0,331 0,36 0,383
t, с 240 245 258,75

Q´10-4 Кл

1,84 2,04 2,29

R´1010 Ом

2,47 2,61 2,9

 

3.
Влияние времени саморазряда ячейки на ход кривой.

В течение времени tзар= 60 с. Ячейка заряжалась Uзар=8В (5В, 13В). затем ячейка отключалась от источника питания и в течение tср разряжалась сама на себя. По истечении времени tср ячейка включалась в цепь и разряжалась на ГП - снималась остаточная разрядная характеристика.

Было выяснено, что при увеличении tср Imp уменьшалось (рис. IV.3 10).

Определены параметры t, Q, R, Ump, которые занесены в таблицу 4.

Были построены зависимости:

t( tср) - рис. IV.3.11

Q(tср) - рис. IV.3.12

Ump(tср) - рис. IV.3.13

Можно сделать следующие выводы:

1) с ростом tср t незначительно увеличивается;

2) с ростом tср Q уменьшается по линейному закону;

3) с ростом tср Ump уменьшается по экспоненте.


Таблица 4. Зависимость разрядного тока от времени саморазряда

Uзар=8В, tзар=1 мин.

t ср, c

0 5 10 30 60 90 120

Im p´10-8 А

82,07 72,5 67,88 53,36 34,22 32 27,3

Um p, В

0,354 0,313 0,293 0,23 0,148 0,138 0,12

t, с

248,75 278,75 310 315 322,5 326,3 351,25

Q´10-4 Кл

2,04 2,02 2,01 1,69 1,1 1,04 0,9

R´104 Ом

43,6 43,21 43,23 42,9 43,4 43,28 46,8



IV.4 Влияние температуры на разряд и саморазряд КЯ с МЖ
Информация о работе «Влияние температуры и магнитного поля на электрическую проводимость и аккумуляцию энергии в кондуктометрической ячейке с магнитной жидкостью»
Раздел: Физика
Количество знаков с пробелами: 48640
Количество таблиц: 11
Количество изображений: 26

0 комментариев


Наверх