8. Кінець обчислень.

При виконанні алгоритму перехід від однієї дії до іншої здійснюється строго у порядку їхнього запису. Якщо ж потрібно перервати природний хід дій за деякої умови, слід указувати на це (див. п. 3 наведеного алгоритму).

Структурною схемою алгоритму називають графічне зображення послідовності дій обчислювального процесу.

У схемі кожна дія розміщується у певному геометричному символі (фігурі). Послідовність дій указується на схемі напрямком стрілок на лініях, якими з'єднують ці символи. Зазвичай прийнято початок і кінець обчислень зображувати овалами, введення даних і виведення результатів - у вигляді паралелограма. Обчислювальні операції розміщуються у прямокутниках, а операція перевірки деякої умови зображується у вигляді ромбу. Усередині кожної фігури розміщується стислий формульний опис відповідної операції.

Символи операцій перевірки умови мають два виходи: "так" і "ні". Стрілка на лінії, що виходить із виходу "так" вказує на операцію, до виконання якої потрібно перейти, якщо умову, яка перевіряється, виконано. Стрілка з написом "ні" вказує на операцію, до виконання якої слід перейти у випадку, коли умову не виконано.

На рис. 1.2. подані зображуючи елементи блок-схеми алгоритму обчислень. Фігури з'єднуються лініями зі стрілками, які вказують на операцію, до виконання якої слід перейти.

Для прикладу на рис 1.3 зображено схему алгоритму відшукування коренів квадратного рівняння.

-      Початок (кінець) алгоритму

 


- Введення (виведення) даних


Формула
 
- Обчислювальні операції (формули)

так

- Операція перевірки умови

 


ні

Рис. 1.2 Елементи блок-схеми алгоритму


 


Ромб: D>0 ?

ні так

p1 = - h + D1/2

p2 = - h - D1/2

 

Параллелограмм: Виведення
h, (-D)1/2


 


Рис. 1.3. Схема алгоритму відшукання коренів квадратного рівняння

1.5.3 Реалізація методу обчислень

Обчислення по алгоритмах відбувається за допомогою різних обчислювальних засобів.

При ручних (безпосередніх) розрахунках зазвичай використовуються найпростіші обчислювальні засоби: логарифмічна лінійка, таблиці, механічні, електричні, електронні клавішні обчислювальні машини. Проміжні результати дій алгоритму треба записувати у спеціальний розрахунковий бланк. Наявність програмувальних мікрокалькуляторів дозволяє реалізовувати обчислення автоматично, під керуванням програми.

Суттєвим є контроль обчислень, який проводять за так званим контрольним прикладом (тестом). Результат контрольного прикладу має бути заздалегідь відомим, тобто він або є очевидним, або його відшукують яким-небудь іншим способом. При ручному рахунку контроль рекомендується проводити поетапно. При розрахунках на ЕОМ за складеною програмою контрольний приклад заздалегідь прораховують вручну, а потім звіряють поетапно результати розрахунків із здійснюваними машиною.

Розв’язання нелінійних рівнянь методом дихотомії Метод дихотомії (ділення навпіл)

Алгоритм методу легко зрозуміти з мал.1

 y

y=f(x)

f(b)

a f[(a+b)/2]

 


 f(a) a+b b x

Мал.1 Схема методу дихотомії

Заданий інтервал  ділиться навпіл. Цим знаходиться наближене значення  кореня. Обчислюється значення  функції при цьому значенні аргументу. Якщо воно дорівнює нулю,  є точним значенням кореня й процес закінчується. Якщо ні, то визначається знак значення . Обирається той інтервал, на межах якого задана функція набуває значень протилежного знаку. Наприклад, якщо виявиться, що , то як нове значення верхньої межі інтервалу приймається : . У протилежному випадку змінюється нижня межа інтервалу . Далі процес повторюється для нового звуженого удвічі інтервалу  доти, поки значення похибки (5) не стане меншою за задане припустиме її значення

За остаточне значення кореня при цьому слід узяти значення (4).

Якщо обчислення потрібно проводити з максимальною точністю, процес звуження інтервалу слід продовжувати доти, поки нижня й верхня межі інтервалу  не збіжаться у машинному поданні.

Схема алгоритму метода дихотомії для останнього випадку наведена на Мал.2.

 

 

 

 

 

 

 

 

 

 

 

 


ні

 

Ромб: f(x*)*f(a)<0? так так ні

 

 

 

 

 

 

 

 


Мал 2. Схема алгоритму метода дихотомії

До переваг метода дихотомії слід віднести те, що він може бути застосований навіть до тих неперервних функцій, що є недиференційованими у деяких точках усередині заданого інтервалу визначення кореня.


Список літератури

1. Бахвалов Н.С. и др. Численные методы. -М. : Наука, 1987.

2. Боглаев Ю.П. Вычислительная математика и программирование. -М.: Высшая школа, 1990.

3. Демидович Б.П. , Марон И.А. Основы вычислительной математики. -М. : Наука, 1970.

4. Войцехівський, І.П. Гаврилюк та ін. – К.: Вища шк., 1995, 303 с.

5. Воробьева Г.Н. , Данилова А.Н. Практикум по вычислительной математике. -М. : Высшая школа, 1990, 208.

6. Гаврилюк І.П., Макаров В.Л. Методи обчислень: Підручник: У 2ч. – К.: Вища шк., 1995. – Ч.1., 367 с.

7. Гаврилюк І.П., Макаров В.Л. Методи обчислень: Підручник: У 2ч. – К.: Вища шк., 1995. – Ч.2., 431 с.

8. Мак-Кракен Д., Дорн У. Численные методы и программирование на Фортране. - М.: Мир, 1977.


Информация о работе «Алгоритми і методи обчислення»
Раздел: Математика
Количество знаков с пробелами: 25929
Количество таблиц: 7
Количество изображений: 4

Похожие работы

Скачать
42487
3
1

... ї конференції молодих науковців CSE-2007. – Львів: Видавництво Національного університету "Львівська політехніка", 2007. – С.74–75. АНОТАЦІЇ Акимишин О.І. Методи та засоби зменшення обсягів даних тріангуляційного опису об’єктів комп’ютерної томографії. – Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.13.05 – комп’ютерні системи та ...

Скачать
13243
1
4

... програми Mathcad, рівне – 2,681. Нижче наведено результат роботи програми. Висновки   В ході виконання даної курсової роботи було розглянуто методи чисельного інтегрування, а саме: Чебишева та Трапеції. Було досліджено вказані методи інтегрування та порівняно їх точності, розроблено програму на компіляторі Turbo C++, яка знаходить чисельне значення вказаного інтегралу. Таким чином були ...

Скачать
54576
5
0

... є f*, є рутинною вправою; отже, х-1 є обчислювана функція на Z. Приведене вище визначення очевидним образом розширюється на n-місцеві обчислювальні функції на області D і розв'язні предикати на D. 5. Алгоритмічні проблеми для L   Нижче дається огляд нерозв'язних проблем, що виникають у самій теорії обчислювальності, і обговорюються деякі методи доказу нерозв'язності. Нагадаємо, що предикат ...

Скачать
30097
4
1

... (меньше 0,33%) одного з вільних членів системи (3) зовсім змінило розв’язок системи. На щастя, на практиці системи рівнянь, погано обумовлені, зустрічаються дуже рідко. 1.2 Методи розв’язування задачі Метод Жордана-Гаусса був розроблений двома вченими Жорданом та Гаусом (ві яких і пішла назва методу). Цей метод вони помітили після довгої практики роботи з системами рівнянь. Це можна ...

0 комментариев


Наверх