3.1 Работа ПГС изделия при запуске
Так как двигательная установка работает на низкокипящих компонентах, заправка и захолаживание магистралей осуществляется непосредственно на стартовой позиции.
Заправка топливных баков производится в вертикальном положении через штуцеры 15 и 16 при открытых клапанах 27 и 28. Перед стартом производится захолаживание основных магистралей газообразным гелием. Гелий подаётся через клапаны 33 и 34 и собирается в ресивер через клапаны 22 и 25.
По команде на запуск после отделения первой ступени открываются клапаны 7 и 8, после чего прорываются мембраны принудительного прорыва 13 и 14. Компоненты заполняют магистрали и полости насосов. После срабатывает пороховой газогенератор 32 и пороховые газы раскручивают пусковую турбину 6. Открываются клапаны 23 и 24. Насосы начинают подавать компоненты в камеру и основной газогенератор. Пирозажиганием инициируется горение в газогенераторе и камере сгорания. Двигатель выходит на режим.
3.2 Работа ПГС изделия в полете
Тяга двигателя регулируется при помощи регулятора кажущейся скорости, установленного на линии горючего, идущего в газогенератор. Этот регулятор получает информацию о текущей кажущейся скорости и сравнивает её с программной. Регулированием расхода рабочего тела через турбину, осуществляется управление оборотами ТНА. На линии расхода окислителя в КС расположен регулятор системы одновременного опорожнения топливных баков.
Наддув бака горючего в полёте осуществляется отбором газа после турбины и управляется клапаном 26, наддув бака окислителя осуществляется инертным газом (гелием) и управляется клапаном 29.
3.3 Останов двигательной установки
По команде на останов ДУ прекращается наддув баков, клапан 24 закрывается, прекращая подачу окислителя в ГГ. Горение в ГГ прекращается, рабочее тело перестаёт поступать на турбину, ТНА останавливается. Закрываются клапаны 7 и 8, прекращая подачу компонентов в насосы, так же закрывается клапан 24. Открываются пироклапаны 17 и 18 и в магистрали за насосами начинает поступать гелий, обеспечивающий дренаж оставшихся компонентов через открывшиеся клапаны 22 и 25 в окружающее пространство.
4. Тепловой расчет двигательной установки
Целью проведения теплового расчета является определение основных параметров рабочего тела в камере сгорания и на срезе сопла, определение основных геометрических размеров двигателя.
Тепловой расчет состоит из следующих частей – термодинамического и газодинамического расчетов.
Целью проведения термодинамического расчета является определение термодинамических параметров рабочего тела (температуры, состава, газовой постоянной) в заданных сечениях камеры сгорания.
Результаты термодинамического расчета камеры сгорания двигателя необходимы для проведения газодинамического расчета, при котором определяются основные характеристики двигательной установки (удельный импульс, массовый расход компонентов) и определяющие размеры камеры сгорания (диаметр критического сечения, диаметр среза сопла).
В настоящее время существуют таблицы результатов стандартных термодинамических расчетов, полученных для различных вариантов значений коэффициента избытка окислителя, давлений в камере сгорания и на срезе сопла. Результаты термодинамического расчета для заданных давлений и коэффициента избытка окислителя могут быть получены при помощи интерполяции значений, взятых из таблицы.
Выбор значения коэффициента избытка окислителя α в соответствии графиком функции Iуд(α) при заданных давлениях в камере сгорания PК и на срезе сопла PС. Критерием выбора значения α является максимальное значение удельного импульса Iуд.
При проведении данного расчета считается, что выбранное соотношение компонентов постоянно по сечению камеры сгорания. Однако, для улучшения условий охлаждения камеры сгорания, возле стенок создается пристеночный слой, в котором коэффициент избытка окислителя отличается от своего значения в ядре потока. За счет увеличения содержания горючего в пристеночном слое температура газовой стенки падает, что уменьшает конвективный тепловой поток, передаваемый стенке камеры. Продукты сгорания в пристеночном слое имеют иные термодинамические параметры, нежели в основном потоке. Соответственно, удельный импульс, создаваемый продуктами сгорания в пристеночном слое, будет отличаться (в меньшую сторону) от удельного импульса основного потока.
При проведении стандартных термодинамических расчетов считается, что вся энергия, получаемая в результате сгорания топлива, переходит в кинетическую энергию частиц истекающих газов. При этом не учитывается энергия, затрачиваемая на привод предкамерной турбины. Однако величины потерь составляют небольшую часть от общей термодинамической энергии рабочего тела и не могут быть оценены до проведения расчетов параметров предкамерной турбины.
По результатам проведения расчетов предкамерной турбины, влияния пристеночного слоя, параметры двигательной установки могут быть скорректированы, что потребует повторного проведения теплового и всех последующих расчетов.
... внутренних напряжений при Т =200С. 2.Упрочнение деталей поверхностным пластическим деформированием. 2.1 Общие положения. Обработка дробью применяется для упрочнения разнообразных деталей планера и двигателей летательных аппаратов – лонжеронов, бимсов, монорельсов, деталей шасси, обшивок, панелей, лопаток турбины и компрессора, подшипников и т.д. Сущность дробеударного упрочнения ...
... кроме того, обязательно существует зависимость процессов на входе системы от процессов на ее выходе. Общая характеристика радиоуправления летательными аппаратами Из всего многообразия летательных аппаратов мы выделим лишь следующие их виды, наиболее характерные с точки зрения применяемых методов и средств управления ...
... бортовыми средствами БЛА, на пункт управления. Бортовой комплекс навигации и управления БЛА Бортовой комплекс "Аист" является полнофункциональным средством навигации и управления беспилотного летательного аппарата (БЛА) самолетной схемы. Комплекс обеспечивает: определение навигационных параметров, углов ориентации и параметров движения БЛА (угловых скоростей и ускорений); навигацию и ...
... наблюдения объектов и передачи их телевизионного или тепловизионного изображения в реальном масштабе времени на наземный пункт управления. Общее описание Дистанционно-пилотируемый летательный аппарат (ДПЛА) «Пчела-1Т» входит в состав высокомобильного комплекса, обеспечивающего получение в реальном масштабе времени видовой разведывательной информации от телевизионной аппаратуры, ...
0 комментариев