9. Ориентировочный расчет смесительной головки канала
В данном расчете располагаем двухкомпонентные центробежные форсунки по концентрическим окружностям, а для создания пристеночного слоя используем однокомпонентные центробежные форсунки горючего.
Рисунок 7 – Расположение форсунок.
Выберем диаметры форсунок ядра и пристеночного слоя:
и
Определим шаг между форсунками Н:
;
где Δ1 – шаг между форсунками ядра Δ1=1..5 мм.
Толщина пристеночного слоя головки lпр:
где: Δ2 – расстояние между форсункой пристеночного слоя и стенкой канала
Δ2=1..4 мм.
Найдём радиус ядра головки Rя:
.
Рассчитаем число концентрических окружностей n:
.
Определим число форсунок ядра и пристеночного слоя :
Выбираем число форсунок пристеночного слоя, возьмём число форсунок равное числу форсунок в крайнем ряду ядра смесительной головки:
Определяем расход через форсунку ядра:
Подставив значения получим:
В результате получим:
Определяем расход через форсунку пристеночного слоя:
Получим:
Рисунок 8 – Схема расположения форсунок на смесительной головке канала
10. Расчет форсунок смесительной головки
10.1 Расчет двухкомпонентной форсунки
10.1.1 Расчет форсунки окислителя
Задаем угол распыла 2α=900, по графику определяем:
А=1,8; μ=0,34; φ=0,55.
Определяем площадь сечения сопла форсунки:
где ρ0 – плотность фтора, ρ0=1513 кг/м3, .
Подставив данные получим:
Определим dc:
Диаметр закрутки:
.
Диаметр входного отверстия в форсунку:
где i – число входных отверстий, i=4.
Определим скорость компонента на входе в форсунку:
Определим число Рейнольдса на входе:
где, - кинематическая вязкость, получим:
Рассчитаем:
подставив данные получим:
Выразим λ, получим: .
Определим Аэкв:
В результате получаем:
Определим расхождение коэффициентов А и Аэкв:
Полученное расхождение меньше 3%. Данную форсунку можно считать идеальной центробежной форсункой.
Определим диаметр камеры закрутки:
Примем
Определим диаметр вихря:
... внутренних напряжений при Т =200С. 2.Упрочнение деталей поверхностным пластическим деформированием. 2.1 Общие положения. Обработка дробью применяется для упрочнения разнообразных деталей планера и двигателей летательных аппаратов – лонжеронов, бимсов, монорельсов, деталей шасси, обшивок, панелей, лопаток турбины и компрессора, подшипников и т.д. Сущность дробеударного упрочнения ...
... кроме того, обязательно существует зависимость процессов на входе системы от процессов на ее выходе. Общая характеристика радиоуправления летательными аппаратами Из всего многообразия летательных аппаратов мы выделим лишь следующие их виды, наиболее характерные с точки зрения применяемых методов и средств управления ...
... бортовыми средствами БЛА, на пункт управления. Бортовой комплекс навигации и управления БЛА Бортовой комплекс "Аист" является полнофункциональным средством навигации и управления беспилотного летательного аппарата (БЛА) самолетной схемы. Комплекс обеспечивает: определение навигационных параметров, углов ориентации и параметров движения БЛА (угловых скоростей и ускорений); навигацию и ...
... наблюдения объектов и передачи их телевизионного или тепловизионного изображения в реальном масштабе времени на наземный пункт управления. Общее описание Дистанционно-пилотируемый летательный аппарат (ДПЛА) «Пчела-1Т» входит в состав высокомобильного комплекса, обеспечивающего получение в реальном масштабе времени видовой разведывательной информации от телевизионной аппаратуры, ...
0 комментариев