2. АНАЛИЗ КОНСТРУКЦИИ И РАБОТЫ МОДЕРНИЗИРУЕМОГО УЗЛА
Чтобы проанализировать все недостатки и преимущества модернизированного узла (муфты сцепления), рассмотрим устройство и принцип работы муфты сцепления до модернизации.
Рис. 2.1 Сцепление. 1,1а-диск ведомый, 2,2а-накладка, 3-диск нажимной, 4-палец, 5-шайба, 6-шплинт, 7-рычаг отжимной, 8-вилка, 9-пружина, 10-диск опорный, 11-гайка регулировочная, 12-шайба стопорная, 13-шайба, 14-болт, 15-шайба, 16-гайка, 17-заклепка, 18-ступица, 19-демпфер, 20-втулка, 21-заклепка, 22-шайба, 23-стакан, 24, 24а-пружина, 25-шайба изолирующая, 26-шайба, 27-болт, 28-пластина, 29-втулка, 30-заклепка.
Силовая передача включает в себя сцепление, коробку передач, привод ПВМ и задний мост. Она служит для передачи крутящего момента от коленчатого вала дизеля к передним и задним колесам.
Одной из составляющих силовой передачи и является наш объект модернизации – сцепление.
На рис.2.1 показано сцепление фрикционное, однодисковое, постоянно замкнутое. Ведущей частью муфты сцепления является маховик, нажимной диск 3, имеющий три шипа, которые входят в специальные пазы маховика. К ведомой части сцепления относятся ведомый диск 1 с гасителем крутильных колебаний 19, установленный на силовом валу. Необходимое усилие прижатия трущихся поверхностей ведущей и ведомой частей сцепления для передачи крутящего момента от дизеля к трансмиссии обеспечивается девятью пружинами 24.
Диск 3 имеет рычажные механизмы 7, обеспечивающие автоматическую регулировку его положения при выключении сцепления.
Опорами отжимных рычагов служат вилки 8, закрепленные на диске с помощью регулировочных гаек 11.
Такая муфта сцепления широко применяется на тракторах Беларус серии 800, 900, 1000. Он неплохо себя зарекомендовала в работе, выдерживала сложные режимы работы. Однако и имела ряд нареканий. При частых включениях и выключения муфты повышался тепловой режим, фрикционные диски теряли свои физико-химические свойства, что приводило к повышенному износу фрикционного слоя, в следствие чего приводило к буксованию сцепления.
Наша модернизация больше коснется нажимного устройства муфты сцепления. На рис.2.2 показан эскиз модернизированной муфты сцепления.
Рис. 2.2 Муфта сцепления с тарельчатой пружиной
В данной конструкции муфты сцепления вместо радиально расположенных нажимных пружин установлена одна тарельчатая пружина поз.12 рис.2.2. Также нужно учесть, что данная муфта сцепления работает в масле. Одним из основных преимуществ ФС, работающих в масле «мокрых», по сравнению с «сухими» ФС, является их надежность и долговечность, отсутствие частых эксплуатационных регулировок. Это связано с меньшим изнашиванием пар трений(ПТ), лучшим отводом теплоты от них и большей стабильностью их коэффициентов трения.
Применение смазывания пар трений фрикционного сцепления (ФС) уменьшает их коэффициент трения до 0,07…0,09 вместо 0,25…0,3 у сухих ФС, но при этом позволяет почти десятикратно увеличить давление на них и примерно в 2 раза сократить площадь контакта дисков из-за наличия канавок на их поверхности.
Смазывание ПТ ФС качественно меняет на трибологические процессы при буксовании «мокрых» ФС, обеспечивая жидкостное и полужидкостное (граничное) трение. Под последним обычно понимают такой режим работы мокрого ФС, когда трущиеся поверхности ПТ разделены тончайшей масляной пленкой (толщиной менее 0,1 мкм), фактически на молекулярном уровне, препятствующей непосредственному контакту ПТ. Этим обеспечивается малое изнашивание ПТ при высоких усилиях сжатия и постоянный их коэффициент трения. Увеличение толщины разделительной масляной пленки ведет к нежелательному снижению коэффициента трения, а ее разрыв — к резкому увеличению изнашивания ПТ. Следовательно, положительные качества мокрых ФС зависят от определенных внешних условий, обеспечивающих именно граничное трение на фрикционных парах, что неизбежно ведет к существенному усложнению конструкции мокрых ФС по сравнению с сухими.
Повышенная сложность мокрых ФС предопределила более широкое применение сухих ФС, отличающихся относительной конструктивной простотой и достаточной надежностью работы в прошлые годы, когда энергонасыщенность тракторов и других тяговых машин и их рабочие и транспортные скорости резко отличались от современных.
Вместе с тем опыт эксплуатации сухих ФС показал, что они имеют ряд недостатков, обусловленных главным образом непостоянством коэффициентов трения при изменениях температур ПТ и их повышенным износом, связанным с ростом энергонасыщенности машин.
Непрекращающийся поиск наиболее долговечных фрикционных материалов, совершенствование конструкций сухих ФС и другие научные исследования, проводимые в нашей стране и за рубежом, значительно повысили их ресурс; особенно это коснулось ФС для сельскохозяйственных тракторов, комбайнов, легковых и большинства грузовых автомобилей. Одновременно стало выясняться, что для тяжелых промышленных тракторов, вследствие специфики их работы и повышенных сил тяги, сухие ФС не могут обеспечить при заданных геометрических размерах необходимой долговечности ПТ.
Отсюда правомерен все нарастающий интерес к применению на мощных тракторах мокрых ФС, потенциально более надежных и долговечных, о чем было сказано ранее. В автомобилях их использование весьма ограничено.
Тенденция повышения энергонасыщенности и тяги тракторов, особенно промышленных, четко прослеживается и в том, как растет количество зарубежных патентов мокрых ФС по десятилетиям, начиная с 30-х годов. Если в 30-е и 40-е годы были зарегистрированы соответственно только один и три патента и все они были американских фирм, производящих ФС, то в 50-е гг. появились 34 патента Великобритании и 40—Франции. Значительный рост числа патентов прослеживается в 60-е гг., когда во всем мире начался период более резкого роста энергонасыщенности тракторов и других тяговых машин. Особенно большое число патентов зарегистрировано в 70-е гг. — 41, и среди них появились патенты ФРГ, Японии и других стран. В начале 80-х годов также появились новые патенты в ФРГ и США.
Наибольшее число патентов в области создания мокрых ФС имеет фирма «Борг Уорнер» (США), разработавшая разнообразные их конструкции, включая успешно применяемый унифицированный ряд мокрых ФС «Рокфорд Клач».
Фирмы «Катерпиллер» и «Джон Дир» (США) на все выпускаемые тракторы с механическими трансмиссиями устанавливают мокрые ФС с дисками одинакового диаметра, число которых зависит от передаваемого крутящего момента. Фирма «Лайп Рол-лвей» (США) изготовляет мокрые ФС диаметром от 300 до 380 мм пяти типоразмеров. По данным фирмы, долговечность этих ФС примерно в 30 раз больше, чем у сухих ФС того же типоразмера. Вопросами совершенствования подачи масла в зону трения мокрых ФС занимаются фирмы «Дженерал моторе», «Дэй-на» (США) и др.
Ведущей западногерманской фирмой по разработке и производству сухих и мокрых ФС является фирма «Фихтель и Сакс», совершенствующая в основном способы подвода масла в зону трения. Разработкой мокрых ФС занимаются также «Даймлер Бенц», «Зюдойч Кюхль-фабрик» и другие фирмы ФРГ.
В Великобритании фирмами, владеющими патентами по мокрым ФС, являются «Дэвид Браун» «Аутомотив Продактс» и «Г. К. Н. трансмишн», также совершенствующие подачу масла в зону трения.
Японские фирмы «Нисан Мотор», «Дэйкин Сейсакушо» и «Ей-син Сейкин Кабушики Каиша» тоже работают над совершенствованием подачи масла в зону ПТ, от которой в значительной степени зависит надежная и долговечная работа мокрого ФС.
Использование масла в мокром ФС, выполняющего функции жидкостного охлаждения и смазывания ПТ, влечет за собой появление целого комплекса проблем, которые в большей или меньшей степени влияют на надежность самого ФС. К ним в первую очередь надо отнести подбор фрикционных материалов ПТ, способы их охлаждения и смазывания и ряд других, включая способы, обеспечивающие «чистоту» размыкания дисков и повышающие надежность применяемых уплотнений.
Следует отметить, что применение мокрых ФС стало возможным только после создания фрикционных материалов, стойких к воздействию масла.
Наиболее высокой стойкостью к минеральным маслам обладают спеченные материалы, пористая структура которых способствует адсорбированию и удержанию масляной пленки, обеспечивающей граничное трение во фрикционной паре.
Из асбофрикционных материалов на органическом связующем для работы в масле используются в основном эластичные тканые материалы с масляной пропиткой, пластмассы и фрикционные материалы на комбинирующем связующем.
Иногда в мокрых ФС применяются чисто металлические фрикционные пары, поверхность трения которых сульфацианируется Для улучшения противозадирности и прирабатываемости. а также для повышения износостойкости и усталостной прочности.
Основные фрикционные материалы, применяемые в мокрых ФС, а также принципиальные конструктивные решения достаточно подробно рассмотрены ранее.
Для правильной оценки мокрых ФС необходимо указать, что их преимущества реализуются только в определенном диапазоне температур на ПТ. Повышение температуры выше определенного предела резко отрицательно сказывается на материалах ПТ и состоянии масляной разделительной пленки. Металлические фрикционные диски начинают подвергаться короблению, усадке, растрескиванию и сватыванию. Фрикционные материалы других композиций начинают выкрашиваться, происходит их «золочение» и разъединение.
Разложение масла приводит к загрязнению ПТ, уменьшению их пористости и уменьшению проходных сечений канавок для охлаждения и смазки.
Таким образом, тепловой режим мокрого ФС является одним из важнейших факторов его надежности и долговечности, стабильность которого зависит в основном от системы подачи масла на ПТ для их охлаждения и смазывания.
Четкой классификации конструкций системы охлаждения и смазывания поверхностей трения мокрых ФС пока нет. Однако анализ патентной деятельности зарубежных фирм и небольшого еще опыта отечественного конструирования, проводимого в НПО НАТИ и СКБ по сцеплениям и гидротрансформаторам, позволяет наметить основные ее ориентиры: по месту подвода масла в зону трения; по месту действия системы охлаждения и смазывания; по способу подачи масла в зону трения; по направлению подачи масла; по характеру подачи; по способу охлаждения масла и по форме масляных канавок на поверхностях трения, имеющих существенное влияние на их охлаждение и смазывание.
Подвод масла в зону трения возможен от ведущих деталей ФС, от ведомого вала и от MB.
По месту действия системы охлаждения и смазки все существующие мокрые ФС имеют сухой или мокрый картер.
По способу подачи масла в зону трения, являющемуся основным конструктивным признаком системы охлаждения и смазывания, различают подачи с помощью системы разбрызгивания, трубок Пито и насосов. Разбрызгивание может осуществляться различными способами: простым погружением деталей ФС в масло либо с использованием приспособлений, обеспечивающих улавливание разбрызгиваемого масла и направления его на ПТ. Трубки Пито служат для непосредственной подачи масла к фрикционным дискам ФС и для вывода масла из рабочего картера в масляный резервуар, из которого оно посредством других приспособлений подается в зону трения.
Больше половины конструкций систем охлаждения и смазывания мокрых ФС содержат масляные насосы. Их привод осуществляется или от ведущих деталей ФС, или они независимы (могут быть использованы насосы смазочных систем двигателя или коробки передач).
По направлению подачи масла различают системы с подачей его от внутреннего диаметра БД к внешнему, в обратную сторону или комбинированные, когда масло вначале подается внутрь ФС а затем под действием центробежных сил вновь отбрасывается наружу.
По характеру подачи встречаются системы с прерывным или непрерывным потоком масла в зону трения. В первом случае масло подается только в момент включения или только в выключенном состоянии ФС; во втором масло течет постоянно или в определенный период работы ФС.
По способу охлаждения масла различают системы с охлаждением в маслосборнике ФС, маслосборниках двигателя и коробки передач, в водяном радиаторе, а также в маслосборнике картера за счет системы охлаждения двигателя.
По форме масляных канавок на поверхностях трения их рисунок бывает спиральным, радиальным, спирально-радиальным, наклонным, тангенциальным, концентрическим, сетчатым («бриллиантовым», типа «квадрат», дифференциальным), в виде отверстий и др. Иногда используются поверхности трения без канавок для охлаждения и смазывания.
Достоинства соединения с помощью тарельчатой пружины заключается в ликвидации потерь на трение, высокой несущей способности, устранение опасности заедания нажимного диска и предотвращения повышенных вибраций в связи стабилизацией эксплуатационного дисбаланса ведущих частей ФС. Что касается управления, то для этой муфты сцепления применим гидравлическое управление. Управление показано на рис.2.3
Рис. 2.3 Управление муфтой сцепления.
В подведении итогов по предлагаемой конструкции можно сказать, что муфта сцепления с тарельчатой пружиной, работающая в масле и с гидравлическим управлением является прогрессивным решением для устранения ряд недостатков и устаревших схем муфт сцепления и управления.
... навыки у докеров. 23. СИСТЕМА ОБЕСПЕЧЕНИЯ ПЕРЕГРУЗОЧНЫХ РАБОТ ТЕХНОЛОГИЧЕСКОЙ ОСНАСТКОЙ Система обеспечения оснасткой технологических процессов портовых перегрузочных работ включает: планирование поставки и производство механизмов и приспособлений; содержание их в исправном состоянии, т. е. регистрацию, освидетельствование с испытанием, периодические осмотры, техническое обслуживание и ...
... передаточных чисел Кинематическое передаточное число ix: Силовое передаточное число iy: iy=F1/N¢V=2754,82/2596,5=1,061. 6.3 Построение кривой жесткости подвески Для построения упругой характеристики подвески автомобиля ЗАЗ-1102 “Таврия” необходимо определить жесткость средней части подвески с1. Расчет жесткости подвески с1 проводится по выбранной частоте колебаний ω ...
0 комментариев