1. Обзор литературы.
1.1.Магнитные сорбенты
1.1.1. Синтез пористых ферритов с применением выгорающих добавок.
Среди большого числа адсорбентов, отличающихся друг от друга структурными параметрами, природой поверхности и соответственно областью применения, особое место занимают пористые тела с магнитными свойствами.
Для решения большинства сорбционных задач требуются адсорбенты с различной пористой структурой, среди которых минеральные пористые вещества занимают основное положение. Во-первых, они во много раз дешевле, доступны и синтез их не требует специального оборудования и дефицитного сырья. Во-вторых, методы получения данных адсорбентов, в том числе и с магнитными свойствами, позволяют в широких пределах регулировать их структуру. Это свидетельствует о необходимости расширения исследований по синтезу адсорбентов, выявлению закономерностей механизма их структурообразования, природы поверхности, магнитных и адсорбционно-структурных свойств.
Способы получения указанных пористых материалов в зависимости от температуры их синтеза методически могут быть подразделены на две группы. В первой группе они реализованы путем наращивания компонентов шпинельного состава на поверхности коллоидных частиц термостойкого носителя (Т= 700— 750°С) [9], во второй — (Т>750°С) путем применения различного рода выгорающих добавок [10].
Отличие минеральных магнитных адсорбентов от угольных ферромагнитных, как следует из анализа литературы [11-15], состоит в следующем: во-первых, ферромагнитные угольные адсорбенты обладают мелкопористой структурой, что существенно ограничивает область их применения, во-вторых, магнитные свойства высокодисперсных ферромагнетиков вследствие значительной анизотропии формы частиц железа в данных системах, степени их упаковки как в объеме, так и в поверхностном слое, а также при наличии на поверхности частиц хемосорбированных поверхностно-активных веществ снижают магнитные характеристики получаемых адсорбентов [12, 13]. В работе [16] показано, что магнитные свойства веществ сильно зависят от упорядоченности активных магнитных частиц, которая для систем с низкой степенью упаковки Р удлиненных частиц сфероидальной формы может быть рассчитана по уравнению [17]:
где Nа и nб — размагничивающие факторы вдоль короткой и длинной оси частиц. Оценка Р0 для железных частиц дает величину ~ 0,2 [18].
В-третьих, например, в металополимере для достижения необходимой магнитной индукции насыщения Вs и остаточной индукции Вr, как показано в работах [13, 19], требуется до 30% электролитического железа в. В-четвертых, несмотря на относительно высокое содержание Fe3O4 в образце, в силу вышеупомянутых факторов, достичь предельной величины магнитных свойств, присущих индивидуальному оксиду Fe3O4, не удается. При этом следует отметить, что магнитные свойства массивного индивидуального Fe3O4 по сравнению с другими магнитными материалами не столь высоки.
В отличие от угольных ферромагнитных адсорбентов, синтезированных на основе дорогостоящих синтетических или природных полимеров, минеральные ферриты как по своим магнитным характеристикам, так и по доступности, стоимости исходных компонентов, экологичности процесса имеют ряд преимуществ: наличие высоких магнитных свойств, отсутствие вредных газовых выбросов при их синтезе, компактное расположение магнитных частиц получаемого вещества и т.д. Действие выгорающей добавки [20] заметно сказывается на росте сорбционной емкости, которая по сравнению с исходными образцами увеличилась в два раза.
Влияние исходной структуры гидрогеля с нанесенной шпинельной фазой проявляется в том, что более крупнопористые гидрогели при температуре синтеза ферритов 650°С подвержены меньшим структурным изменениям, чем мелкопористые. Безусловно, степень изменения Vs и Sуд сильно зависит от термостабильности носителя. Одна картина будет иметь место при наращивании гидроксида магния на носитель — коллоидные частицы гидроксида железа и другая — при наращивании Fе(ОН)3 на частицы Mg(OH)2, емкость поглощения и термостабильность которого по сравнению с Vs гидроксида железа примерно в 2 раза выше. Это уже само по себе, не прибегая к применению структурирующих добавок, позволит в определенных пределах варьировать структуру, а соответственно и сорбционные свойства синтезируемых ферритсодержащих адсорбентов.
1.1.2. Неорганические магнитонаполненные адсорбенты
Наряду с изучением адсорбентов-ферритов с развитой пористой структурой представляют интерес адсорбенты с магнитными свойствами, полученные путем механического смешивания или совместного осаждения магнитных порошков с гидроксидами металлов. Этот метод синтеза по сравнению с другими имеет ряд преимуществ. Во-первых, использование магнитных порошков позволяет за счет структуры матрицы регулировать пористость и удельную поверхность синтезируемых магнитных адсорбентов в желаемом направлении. Во-вторых, в зависимости от процентного содержания магнитного порошка в составе образца и величины его намагниченности можно изменять структурные и физико-химические свойства получаемых адсорбентов в достаточно широких пределах.
Кроме того, данный метод получения адсорбентов с магнитными свойствами дает возможность в достаточно широких пределах регулировать структуру матрицы, а соответственно и структурные параметры синтезированных образцов [21, 22]. Все это наряду со специфическими свойствами указанных адсорбентов расширяет возможность их использования в разных сорбционных процессах.
Существует расхождение между теоретическими расчетами и экспериментальными данными. По теории с возрастанием концентрации (20-50%) магнитной компоненты Vs и Sуд должна уменьшаться, на практике же наблюдается обратное. Причина таких расхождений обусловлена участием твердых частиц порошка в формировании структуры адсорбентов. Механизм их действия связан с образованием жесткого каркаса, препятствующего сжатию гидроксида во время сушки. Аналогично изменяется и удельная поверхность синтезируемых адсорбентов, которые из-за наличия более открытой структуры несколько выше теоретически рассчитанной.
Условия получения адсорбентов оказывают существенное влияние на их адсорбционно-структурные характеристики. Одна картина наблюдается при внесении магнитного порошка в отмытый гель с последующим механическим перемешиванием и другая — при внесении порошка в солевой раствор, т.е. перед осаждением гидроксида. Разница заключается в том, что образцы, полученные по второму методу, имеют на 10—12% более высокие значения Vs и удельные поверхности. Причина данных расхождений состоит в том, что при механическом перемешивании гидроксида вследствие нарушения гидратных оболочек коллоидных частиц происходит неполная стабилизация системы, сопровождающаяся снятием фактора устойчивости отдельных участков поверхности частиц, в результате чего частицы, слипаясь в этих местах, образуют пространственную сетку, в петлях которой будет находиться дисперсионная среда. При сильном падении агрегативной устойчивости между частицами в местах их соприкосновения может происходить полное вытеснение прослоек дисперсионной среды и осуществляться непосредственный контакт между частицами. Причем с повышением частичной концентрации количество контактов, приходящихся на единицу объема системы, и скорость взаимодействия частиц возрастают.
Увеличение числа контактов между частицами — результат их более плотной объемной упаковки, сопровождающейся, как правило, уменьшением сорбционной емкости и сокращением удельной поверхности образцов за счет недоступности поверхности частиц гидроксида для молекул адсорбата. При совместном осаждении гидрогеля с магнитным порошком протекание указанных процессов весьма ограничено вследствие резкого уменьшения дисперсной фазы и концентрации вещества, а также из-за отсутствия интенсивного механического перемешивания, способствующего образованию коагуляционных структур и т.д.
Все это вызывает формирование пестропористой структуры образцов в результате упаковки первичных частиц и вторичных агрегатов частиц, ответственных за образование мезо- и макропор.
Природа магнитного порошка определяет как магнитные, так и сорбционные свойства получаемых адсорбентов. Если первое из них очевидно, то второе имеет неявные очертания. Дело в том, что удельная поверхность получаемых магнитных адсорбентов практически находится в прямой зависимости от процентного содержания в их составе порошка. Отклонения от этой зависимости могут быть обусловлены некоторым действием порошка на структуру гидроксидов.
Отсюда очевидно, что излишнее содержание магнитного порошка в составе адсорбента ухудшает его структурные параметры и сорбционные характеристики. Основную ответственность за изменение указанных структурных параметров по сравнению с исходными образцами несет магнитный порошок, собственный вклад которого в структуру шпинельсодержащего адсорбента составляет величину, практически приближающуюся к нулю.
С ростом содержания шпинельного порошка в составе адсорбента тенденция сокращения удельной поверхности и сорбционной емкости получаемых образцов по отношению к носителю увеличивается.
Кроме того, адсорбционно-структурные свойства магнитнаполненных адсорбентов, так же, как и других пористых материалов, в значительной степени зависят от структуры носителя, обеспечивающей эффективность очистки жидких сред, содержащих примеси с различным размером молекул.
... 4,5. Через краны - бпаста и вода попадают в перемешивающее устройство - 7. По окончании времени перемешивании смесь веществ с помощью крана - 8 попадает в пропиточную ванну - 9, в которую по ленточному конвейеру - 10 поступает древесина из термообрабатывающей печи - 11. После пропитки древесины в течении 30 минут образцы по ленточному конвейеру поступают в печь для последующей сушки. После этого ...
... и, конечно же, за многими другими, которые будут получены, — будущее. В этом направлении и работают многие НИИ и исследователи. Аспекты поиска новых лекарств, изыскание новых лекарственных веществ состоит из трех основных этапов: химический синтез, установление фармакологической активности и безвредности (токсичности). Такая стратегия поиска с большой затратой времени, реактивов, животных, труда ...
... химическое, макроструктурное модифицирование и одновременное обогащение бентопорошка, позволяют повысить сорбционные свойства и качество готовой продукции. 3.4 Разработка полимерных композиционных материалов на основе органоглин на основе бентонита месторождения «Герпегеж» Объектами исследований в данной части работы являются нанокомпозиты, полученные на основе органомодифицированных ...
... – x)Na+}xNa+ Таким образом, получены водорастворимые производные фуллерена С60, которые могут быть использованы в химии и химической технологии. УДК 541.138 СТРУКТУРА И СВОЙСТВА НИКЕЛЕВЫХ СПЛАВОВ, МОДИФИЦИРОВАННЫХ ОРГАНИЧЕСКИМИ ДОБАВКАМИ О.В. Долгих, Н.В. Соцкая, Д.В. Крыльский, М.Ю. Хазель Воронежский государственный университет Сплавы никеля уже давно нашли широкое применение в ...
0 комментариев