3.2 Розробка узагальненої математичної моделі просторових коливань вантажного шестиосьового тепловоза

 

Розробка узагальненої математичної моделі просторових коливань вантажного шестиосного тепловоза, а також опису методики комп'ютерного моделювання. Розрахункова схема локомотива і схема дії сил в системі колісна пара - шлях стосовно колісно-моторного блоку першої колісної пари показані відповідно на рис.1 і 2. Просторові коливання екіпажу тепловоза ТЭ116 визначаються 78 узагальненими координатами.

tmp7A-1

Рис.23. Схема дії сил в системі колісна пара - шлях

У розрахунковій схемі, рис.1, прийняті наступні позначення систем координат для відповідних мас т і моментів інерції J: i, j-ой колісної пари про у, Ху, у у, zy; i-ї рами вагона of, xf, yf, z*; кузови про, х, у, z .

Рівняння повздовжніх коливань кузова

(4)

де tmp94-3(5)

деформація пружних елементів зв'язку кузова з візком в подовжньому напрямі; W(y) - опір руху потягу. Рівняння віднесення кузова

tmp94-4(6)

де tmpAF-1 нелінійна функція типу "зона нечутливості".

tmp95-1(7)

 

Х= 1,2- номера комплекту опор кузова; р - поточна кривизна шляху; hr - поточне піднесення зовнішньої рейки. Рівняння підстрибування кузова

(8)

Рівняння галопування кузова

tmp95-3(9)

Рівняння виляння кузова

tmp95-4(10)

нелінійна залежність моменту в опорах кузова.

Рівняння бічної хитавиці кузова

tmp95-6(11)

Повздовжні коливання рами i-го вагона

tmp95-7(12)

Вертикальні коливання рами i-го вагона

(13)

де F_+ - сила тертя фрикційних гасителів коливань; signAiy - нелінійна

Поперечні коливання (віднесення) рами i-го вагона

(14)

(15)

Галоп рами i-го вагона


 (16)(17)

де /лп - коефіцієнт тертя в парі носик тягового електродвигуна - траверсу підвіски. Бічна хитавиця i-ї рами вагона

tmpB0-5

(18)

Нижче приведені рівняння коливань колісно-моторного блоку стосовно першої колісної пари.

Повздовжні коливання колісно-моторного блоку

(19)

Поперечні коливання колісно-моторного блоку

(20)


де тб - маса колісно-моторного блоку; тд - маса тягового двигуна. Вертикальні коливання колісно-моторного блоку

(21)

де Рст - статичне навантаження від колісної пари на рейки. Виляння колісний-моторного блоку

(22)

де а - відстань від осі колеса до центру мас колісний-моторного блоку.

(23)

Поворот лівого колеса колісної пари

tmpB4-6(24)

де J j - момент інерції лівого колеса з частиною осі і центром зубчатого колеса тягового редуктора;

ск - крутильна (кутова) жорсткість ділянки осі між зубчатим колесом і правим колесом колісної пари;

Мв - нелінійний пружний момент, що діє при відносному повороті лівого колеса і вінця зубчатого колеса. Поворот правого колеса колісної пари

(25)

Поворот вінця зубчатого колеса

tmpB4-8(26).


Висновки

 

1. Встановлення оптимальної твердості поверхні катання колеса є складним завданням, вирішення якого повинне здійснюватися системно, з обліком, різних параметрів.

2. Твердість поверхні катання коліс в даний час обмежена величиною .

3. Напруга локалізована в межах малої області колеса і рейки. Розмір області порівняємо з розміром плями контакту.

4. Повздовжні зусилля, що виникають при різних режимах гальмування, є одним з основних показників, що враховуються в тягових розрахунках і розрахунках на міцність потягів.

5. Розроблена і підтверджена практикою експлуатації методика для оцінки повздовжніх динамічних зусиль і гальмівних шляхів у вантажних потягах і показаний вплив характеристик гальм на динаміку потягу.

6. Математична модель руху поїзда є необхідною і невід’ємною часткою розвитку сучасної транспортної системи.


Література

 

1.  Лисицын А.Л., Мугинштейн Л.А., Терещенко В.П. Поезда повышенного веса и длины. Опыт, проблемы, возможности // Железнодорожный

2.  П. Динамика торможения тяжеловесных поездов. М.: Транспорт, 1977. 151 с.

3.  Ступин Д.А., Беляев В.И. Разработка российского эластомерного поглощающего аппарата для автосцепного устройства грузовых вагонов // Вестник ВНИИЖТ. 1998. № 6. С. 29...31.

4.  Исследование динамики поезда с гидрогазовыми поглощающими аппаратами ГА-500 / С.В. Вершинский, П.Т. Гребенюк, Г.В. Костин, А.Д. Кочнов, Ю.М. Черкашин / Сб. науч. тр. ВНИИЖТ. Вып. 649. М.: Транспорт, 1982. С. 49...65.

5.  Баранов Л.А. Потенциальная оценка пропускной способности железнодорожной линии по системам обеспечения безопасности // JYЖЕЛ: «The 7th International scientific conference of railway experts». Yugoslavia, Vrnjacka Banja: 2000. Р. 43...49.

6.  Расчет и оптимизация координатного сближения поездов метрополитена / Л.А. Баранов, А.А. Моисеев, В.М. Абрамов, В.Н. Полоцкий // Вестник ВНИИЖТ. 1992. № 6. С. 24...28.

7.  Шур Е.А. К вопросу об оптимальном соотношении твердости рельсов и колес //Современные проблемы взаимодействия подвижного состава и пути: Материалы научно-практической конференции/ ВНИИЖТ. – М., 2003. с. 87 – 93.

8.  Бартенева Л.И. Технология лубрикации боковой поверхности рельсов передвижными рельсосмазывателями – комплексное решение проблемы износа в контакте гребень колеса – рельс //Современные проблемы взаимодействия подвижного состава и пути: Материалы научно-практической конференции/ ВНИИЖТ. – М., 2003. с. 114 – 122.


Информация о работе «Математичне моделювання руху поїзда»
Раздел: Транспорт
Количество знаков с пробелами: 66786
Количество таблиц: 3
Количество изображений: 24

Похожие работы

Скачать
135809
1
21

... зичної освіти, а й важливий чинник загального розвитку школяра та професійного становлення у будь-якій галузі. Перша проблема, яку потрібно вирішити, упроваджую чи елементи комп'ютерного моделювання при вивченні фізики – вибір інструментальних засобів його реалізації. У час зародження сучасних інформаційних технологій єдиним способом було використання мов програмування високого рівня. За останні ...

Скачать
99626
0
16

... з системи охолоджування. Манометри показують тиск до і після фільтру, тонкої очистки палива, тобто після підкачуючої помпи і перед насосами високого тиску.   2. МОДЕЛЮВАННЯ РОБОЧОГО ПРОЦЕСУ ЧОТИРЬОХТАКТНОГО ДИЗЕЛЯ Рішення задачі вибору конструктивних і регулювальних параметрів двигунів будь-якого призначення за яким-небудь критерієм може здійснюватися двома методами: експериментальним або ...

Скачать
48339
9
15

... у формулу (2.11) і визначити наступний стан системи . Для зміненого стану знайти оптимальне управління , підставити у формулу (2.11) і так далі. Для і-гo стану , знайти  і  і т.д. [1]. 3. Оптимальний розподіл інвестицій, як задача динамічного програмування Інвестор виділяє кошти в розмірі  умовних одиниць, котрі повинні бути розподілені між -підприємствами. Кожне і-те підприємство при і ...

Скачать
86263
3
4

... прогнозування, визначення економічних і соціологічних тенденцій. Оскільки незалежна потреба величина невизначена, у запас доводиться включати додаткові вироби. 1.2 Моделі систем управління запасами   Система управління запасами реалізує організаційну структуру й поточну політику, що забезпечують підтримку запасу виробів і ефективне керування їм. За допомогою цієї системи здійснюється розробка ...

0 комментариев


Наверх