10 Расчет металлической конструкции моста

Материал балки.

Опыт эксплуатации показал, что достаточная надежность обеспечивается при применение стали Ст3псп3 и Ст3сп по ГОСТ 380-71 (для металлических конструкций ).

Для изготовления несущих элементов металлических конструкций используют листовую, профильную и фасонную сталь, а также холодногнутые профили.

При назначение сортамента металла для конструкций с плоскими стенками толщину листов рекомендуется принимать не менее 4 мм.

Защита от коррозии

У конструкции коробчатого сечения скорость коррозионно-механического изнашивания в 1,5-2 раза ниже, чем у прокатных или гнутых профилей. Чтобы не задерживать влагу, все карманы должны иметь дно с уклоном не менее 1/20; диаметр дренажных отверстий должен быть не менее 20 мм.

Двухбалочный мост.

Т.к. кран предназначен для длительного использования на одном объекте без перебазирования, можно использовать листовые конструкции.

Применим коробчатое сечение, т к коробчатая конструкция обладает меньшей трудоемкостью изготовления, высокой усталостной прочность и меньшей общей высотой моста.


11 Металлическая конструкция моста

Мост выполнен сварным, в качестве материала принята углеродистая сталь марки Ст3псп3. Необходимую высоту балки в среднем сечении определяем из условия :

H = ( 1/12 – 1/18 ) L = ( 1/12 – 1/18 ) 25500 = 2125 – 1416 мм.

Принимаем Н = 1700 мм. Высота сечения балки у опоры Н1 = (0,50,6)*Н = = 900 мм.

Для обеспечения достаточной жесткости при кручении ширина балки по осям вертикальных листов выбирается из условий :

В > L /50 = 25500 / 50 = 510 мм;

В > H / 3 = 600 мм.

Принято В = 600 мм.

Принятые размеры изменим по конструктивным соображениям :

Ширину балки до 740 мм, для обеспечения установки поручней, а также для удобства подхода к тележке. Т. к. мы изменили ширину балки, то можно уменьшить высоту моста, принимаем 1700 мм, следовательно высота сечения балки у опоры будет равняться 850 мм.

 Из зависимостей, используемых при проектировании балок переменного сечения получим :

1. B /п = 24…30, => п = 740/24…30 = 30,83…24,67 мм. Принимаем п = 28 мм

2. b’ = п / 1,4 => b’ = 20 мм.

3. b’’ > 300 мм, это условие выполняется ( b’’ = 700 мм ).

Определяем площади сечения поясов и стенок :

Пояс 1 ………………………………… 2,8*74 = 207, 2 см2.

Пояс 2 …………………………………………… 207, 2 см2.

Стенок …………………… 2*2,0*(170 – 2*2,8) = 657,6 см2.

Площадь всего сечения : F = 1072 см2.

Определяем статический момент элементов сечения относительно оси Х1 – Х1 и у его основания :

Пояс 1 ………………………………… 207, 2 ( 170 – 2,8 / 2 ) = 34933,92 см3.

Пояс 2 ………………………………… 207, 2 ( 2,8 / 2 ) = 290,08 см3.

Стенок ………………………………... 657,6 ( 85 ) = 55896 см3.

Статический момент всего сечения : S = 91120 см3.

Положение центра тяжести сечения относительно оси Х1 - Х1 :

Zo = S / F = 63172 / 743,2 = 85 см.

Моменты инерции относительно горизонтальной оси х – х :

Пояс 1 … ( 74*2,83 / 12 ) + 207,2 ( 170 – 85 – 1,4 )2 = 1448247,8 см4.

Пояс 2 … ( 74*2,83 / 12 ) + 207,2 ( 170 – 85 – 1,4 )2 = 1448247,8 см4.

Стенок … 2( 2,0*164,43 / 12) + 657,6 ( 85 – 82,2 )2 = 1486254,9 см4.

Общий момент инерции сечения Jx = 4382750,5 см4.

Моменты сопротивления сечения относительно оси х – х :

Wx = Jx / H – Z0 = 5156,1 см3.

Моменты инерции элементов рассматриваемого сечения относительно вертикальной оси У – У :

Пояс 1 … 2,8*743 / 12 = 94552,2 см4.

Пояс 2 … 94552,2 см4.

Стенок … 2*( 165,2 * 23 / 12 ) + 657,6*69,62 = 3185739,8 см4.

Общий момент инерции сечения Jу = 3374844,2 см4.

Моменты сопротивления сечения относительно оси У – У :

Wу = 2Jу / В = 91212 см3.

Из аналогичного расчета определены и основные характеристики концевых сечений балки : F = 3792 см2.

Z0 = 42,5 см.

Jx = 803377,2 см4.

Дальнейший расчет производим на статическую прочность исходя из двух основных расчетных случаев :

1)    подъем с земли свободно лежащего груза ( подъем с подхватом ) или резкое торможение груза при неподвижном кране;

2)    Резкое торможение крана ( или тележки ), передвигающегося с поднятым грузом.

 

12 Расчет главных балок моста

 

Нагрузками на рассчитываемую балку в данном случае являются масса поднимаемого груза, масса тележки, собственная масса балки и дополнительные силы инерции при подъеме или торможении груза. Для последующих расчетов примем массу моста Gм = 150 т, массу главной балки G1 = 42 т, массу механизма передвижения G2 = 30 т.

Последующий расчет производим для наиболее нагруженной балки со стороны механизма передвижения. Нагрузка от собственной массы и массы механизма передвижения, приходящаяся на 1 м этой балки, таким образом, будет равна :

gв = (G1 + G2 ) / L = (30000 + 42000) / 25,5 = 2323,5 кгс/м.

Ранее принятая масса тележки Gт = 40000 кг. Балка также будет нагружена крутящим моментом из-за внецентренного приложения нагрузки от массы механизма передвижения моста, в данном случае этой нагрузкой можно пренебречь.

Для определения динамического коэффициента предварительно определяем массы моста и поднимаемого груза :

mм = ( 0,5Gм + Gт ) / g = ( 0,5*150000 + 42000 ) / 981 = 119,3 кгс*с2 / см;

mг = Q / g = 160000 / 981 = 163,1 кгс*с2 / см;

Скорость подъема груза :

V = 4,67 см /с.

Статический прогиб балки от массы поднимаемого груза приближенно определяем из условия ( P = Q ) :

yст = Q L3 / 2*48 E Jx = 160000*25503 / 2*48*2,1*106*4382750,5 = 3 см.

Коэффициент жесткости моста :

см = Q / yст = 160000 / 3 = 53333,3 кгс / см.

Статическое удлинение канатов при подъеме номинального груза Q =160000 кгс :

ст = Q H / i f Eк = 160000*3200 / 8*5,3856*1*106 = 11,8 см.

-           где i – кратность полиспаста, f – площадь поперечного сечения каната см2, Ек – модуль упругости каната, Н – высота подъема груза.

Динамический коэффициент по формуле :

д = 1 + а v = 1,058,

-           где  - поправочный коэффициент, равный 1,5.

v – скорость поднимаемого груза ( см / с ).

а – величина, учитывающая вид нагрузки.

Для случая подъема груза :

a = [ 1 / ( yст + ст ) ] * [ ( mг + mм ) / см ]0,5 = 0,0049

Для случая экстренного торможения :

а = 1 / ( g ( yст + ст ) )0,5 = 0,00829

за расчетную принимаем а = 0,00829.

Нагрузки на колеса тележки :

Pmin/c = Pmin*д + Gт/4 = 54000*1,058 + 42000/4 = 67632 кгс;

Pmax/d = 286000*1,058 + 42000/4 = 313088 кгс;

Максимальная нагрузка на балку действует со стороны тележки, где установлен двигатель, редуктор, тормоз ( а - расстояние от равнодействующей до наиболее нагруженной колесной установки тележки ).

Нагрузка на опору А от массы тележки с грузом в этом случае :

RA = Pmax/d( L + a ) / 2L + Pmin/c[ L – ( 2Lo – a )] / 2L = 313088 ( 25,5 + 2,0 ) / 51 + 67632[ 25,5 – ( 2*4,0 – 2,0 )] / 51 = 168821 + 25859 = 194680 кгс.

Изгибающий момент в рассматриваемом сечении от подвижной нагрузки

Ми1 = RA ( L – a ) / 2 = 194680 ( 25,5 – 2,0 ) / 2 = 2676850 кгс*см.

Нагрузка на опору А от массы балки и механизма передвижения

RA1 = gв*L / 2 = 2323,5*25,5 / 2 = 29624,5 кгс.

Изгибающий момент от этой нагрузки

Ми11 = ( RA1 ( L – a ) / 2 ) – ( gв ( L – a )2 /8*100) = (29624,5( 25,5 – 2,0 ) / 2) – (2323,5( 25,5 – 2 )2 / 800) = 348087 – 1603 = 346484 кгс*см.

Суммарный изгибающий момент :

Ми = Ми1 + Ми11 = 3023334 кгс*см.

Напряжения в рассчитываемом сечении :

и = ( Ми / Wx ) * kзап = ( 3023334 / 5156,1 )*1,7 = 996,81 кгс / см2.

[ и ] и => 1700 996,81 – выполняется ( 1700 кгс /см2 – для крановых конструкций легкого и среднего режимов работы ).

Для обеспечения устойчивости стенок балки между ними установлены поперечнные листы ( диафрагмы ). Принятое наибольшее расстояние между диафрагмами 3000 мм. Наименьшее расстояние между ребрами 1000 мм.

Напряжения смятия торца диафрагмы при толщине  = 2,0 мм.

см = Pmax/d / bo*313088 / 104 * 2,0 = 1505,3 кгс/см2

- где bo = b2 + 22,0 = 104 мм – ширина площадки диафрагмы, воспринимающей нагрузку на колесо тележки, b2 – ширина подошвы рельса.

Допустимо [ см ] = 1,5 [p = 1,5 *1700 = 2550 кгс/см2.


Информация о работе «Мостовой кран»
Раздел: Транспорт
Количество знаков с пробелами: 38980
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
59645
15
1

... (разгон, замедление) и период движения с установившейся скоростью. Мостовой кран установлен в литейном цеху металлургического производства, где наблюдается выделение пыли, поэтому электродвигатель и все электрооборудование мостового крана требует защиты общепромышленного исполнения не ниже IP 53 - защита электрооборудования от попадания пыли, а также полная защита обслуживающего персонала от ...

Скачать
16546
0
0

... кран общего назначения грузоподъемностью 16/3,2 т. Поступательно перемещающиеся мостовые краны часто снабжают крюками, скобами либо специальными грузозахватными устройствами (магнитами, грейферами, механическими клещами). Мостовые краны снабжены тележками, предназначенными для подъема и перемещение груза вдоль пролета. Тележки могут перемещаться по рельсам, закрепленные на верхних или нижних ...

Скачать
16338
0
0

... передачей, чтобы при подъеме или спуске электромагнита одновременно поднимался или опускался кабель. К грузозахватным органам относятся крюки, скобы, грейферы и электромагниты. Крюки для мостовых кранов изготовляют коваными из конструкционной стали или штампованными из отдельных листов. Согласно стандартам, крюки однорогие кованые для подъемных механизмов рассчитывают на грузоподъемность 80 т, ...

Скачать
51926
3
2

... , замедление) и период движения с установившейся скоростью. Мостовой кран установлен в кузнечнопрессовом цеху машиностроительного производства, где наблюдается выделение пыли, поэтому электродвигатель и все электрооборудование мостового крана требует защиты общепромышленного исполнения не ниже IP 53 - защита электрооборудования от попадания пыли, а также полная защита обслуживающего персонала от ...

0 комментариев


Наверх