2.2 Магнитооптический метод

Свет, как известно, имеет волновую природу, причем световые волны есть волны поперечные, т.е. колебания в световой волне направлены перпендикулярно линии распространения светового луча. В обычном естественном свете эти поперечные колебания совершаются перпендикулярно направлению луча в самых разнообразных плоскостях.

Если на пути светового луча поставить особый прибор называемый поляризатором, то он выделит световые волны, колебания которых происходят в строго определенной плоскости. Такая световая волна называется поляризованной.

Если на пути поляризованного света поставить еще один поляризующий прибор (анализатор), то свет через него пройдет полностью только в случае, если поляризатор и анализатор расположены одинаково. Если же расположение их неодинаково, то свет через них пройдет лишь частично. При «скрещенных» поляризатора и анализатора, когда они расположено под углом 900 относительно друг друга, свет через них вообще не проходит [7, с. 82-83].

Магнитооптический метод наблюдения доменов с помощью магнитооптических эффектов Керра или Фарадея не требует использования промежуточной среды типа суспензии, поэтому он удобен для исследования доменов при различных температурах.

Магнитооптический эффект Керра заключается в том, что при отражении падающего на намагниченный магнетик поляризованного света происходит поворот плоскости поляризации. Рисунок 44 поясняет принцип действия установки для наблюдения доменов с помощью магнитооптического эффекта Керра. На рисунке 44а изображена схема установки. Свет от источника, проходя поляризатор, поляризуется и, отразившись от полупрозрачного зеркала, падет на образец перпендикулярно его поверхности. Отраженный от поверхности образца поляризованный свет, пройдя полупрозрачное зеркало, попадает на анализатор, который пропускает только компоненту, параллельную оси анализатора. Затем поляризованный свет попадет в окуляр, через который производится визуальное наблюдение. Если ферромагнитный образец разбит, как показано на рисунке 44б, на домены, в которых направление спонтанной намагниченности перпендикулярно поверхности образца, то благодаря магнитооптическому эффекту Керра в доменах с антипараллельной намагниченностью поворот плоскости поляризации произойдет в противоположных направлениях. Следовательно, изображение домена в отраженном свете будет светлым, если направление поляризации отраженного от него света совпадает с направлением оси пропускания анализатора, и темным в обратном случае.

Рисунок 44. а – установка для наблюдения доменов с помощью магнитооптического эффекта Керра; б – поворот плоскости поляризации света, отражённого доменами ферромагнитного образца, ось лёгкого намагничивания которого перпендикулярна поверхности.

На рисунке 45 показано изображение доменов MnBi в плоскости с, полученное этим методом. В MnBi ось с является легкой осью, причем константа анизотропии очень велика. Поэтому размагничивающее поле, создаваемое возникающими на поверхности магнитными полюсами, не оказывает заметного влияния и намагниченность доменов направлена перпендикулярно поверхности. На рисунке 45а-в показаны домены в образцах разной толщины. Как мы видим, изображение меняется сильно.

Рисунок 45 - Изображение доменов с плоскости образца MnBi, полученное с помощью магнитооптического эффекта Керра. а – толстый образец; б, в – образцы с последовательно уменьшающейся толщиной.

Если направление намагниченности параллельно поверхности образца, метод, схема которого представлена на рисунке 44, не дает результатов. В этом случае для наблюдения доменов с помощью магнитооптического эффекта Керра свет посылают на поверхность образца под углом и используют то обстоятельство, что направление поворота плоскости поляризации зависит от знака проекции вектора намагниченности на направление распространения света (в такой геометрии проявляется меридиональный эффект Керра). Оптическая система, включающая анализатор и окуляр, очевидно, должно быть расположена зеркальносимметрично падающему лучу [9, с. 163-165].

При отражении линейного поляризованного света от намагниченной поверхности плоскость поляризации света поворачивается на угол, величина которого зависит от направления намагниченности образца. Вращение плоскости поляризации света при отражении его от поверхности намагниченного ферромагнетика называется магнитооптическим эффектом Керра. В зависимости от взаимного расположения вектора намагничивания в плоскости ферромагнитного образца и плоскости падения света различают полярный, меридиональный и экваториальный эффекты Керра.

Полярный эффект Керра: вектор намагничения перпендикулярен поверхности ферромагнитного зеркала, но параллелен плоскости падения света (рисунок 46а). Меридиональный (продольный) эффект Керра: вектор намагничения находится в плоскости зеркала и параллелен плоскости падения света (рисунок 46б). Экваториальный (поперечный) эффект Керра: вектор намагничения расположен в плоскости зеркала, но перпендикулярен плоскости падения света (рисунок 46в) [2, с.124-125].

Рисунок 46.


Как было показано Керром, при отражении поляризованного света от намагниченного ферромагнетика плоскость поляризации света несколько изменяется в зависимости от направления и величины намагниченности.

Поскольку намагниченность в различных доменах ферромагнитного кристаллита направлена по-разному, то и плоскость поляризации отраженного света от них повернется на различные углы, и от различных доменов через анализатор пройдет свет различной интенсивности.

При фокусировке изображения кристаллита на фотопластинку домены, намагниченность в которых направлена по-разному, будут представлены в виде полос различной освещенности.

На рисунке 47 изображена фотография доменной структуры кристалла кремнистого железа. В отсутствие магнитного поля доменная структура представляет собой темные и светлые полосы равной ширины (а). При наложении магнитного поля размеры доменов изменяются (б-в).

Рисунок 47 - Доменная структура кристалла кремнистого железа в нарастающем магнитном поле. С увеличением магнитного поля ширина темных доменов уменьшается вплоть до их полного исчезновения

Домены, изображенные на рисунке в виде темных полос, уменьшаются, из чего можно заключить, что они невыгодно ориентированы в отношении поля. В достаточно сильном поле эти домены исчезают (г).

На рисунке 48 приведены фотографии доменной структуры того же кристалла в отсутствие поля при различных температурах, вплоть до 7000 С.

Рисунок 48 - Доменная структура кристалла кремнистого железа в отсутствие магнитного поля при различных температурах

Как видно из рисунка, доменная структура в этом случае обладает высокой температурной стабильностью (ширина доменов практически остается без изменений).

При наложении механических напряжений доменная структура также изменяется. Если напряжения однородны, она обычно становится более «правильной». Границы доменов представляют собой параллельные, равностоящие друг от друга линии. Иногда же при наложении напряжений доменная структура перестраивается и принимает совершенно иной вид. Характер изменения доменной структуры зависит от величины напряжений и их направления относительно осей кристалла.

На рисунках 49 и 50 показано изменение доменной структуры под действием напряжений. Что касается размеров доменов в отдельных кристаллах, то они зависят от размеров самого кристалла [7, с. 83-84].

Рисунок 49. Под действием напряжений доменная структура вида а превращается в структуру вида 6

Рисунок50 - Изменение доменной структуры под действием напряжений: а – σ = 0; б – σ = 8; в – σ = 12,5; г – σ = 19 кг/мм²


Эффект Фарадея заключается в том, что при прохождении плоскополяризованного света через вещество, магнитное поле в котором не равно нулю, возникает вращение плоскости поляризации. Очевидно, эффект Фарадея можно использовать лишь для исследования прозрачных сред. При изучении доменной структуры он может быть применен для очень тонких прозрачных ферромагнитных пленок.

Направление вращения плоскости поляризации зависит от направления намагниченности в домене. Если при исследовании структуры с антипараллельными доменами поляризатор и анализатор скрещены для доменов одного из направлений намагниченности, т.е. свет от этих доменов не проходит, то для доменов противоположного направления намагничености вследствие различного направления вращения плоскости поляризации свет через анализатор пройдет. Таким образом, доменная структура будет видна в виде темных и светлых полос доменов противоположной намагниченности.

Характерно то, что здесь выявляются сами домены, а не границы между доменами, как в случае метода порошковых фигур.

На рисунке 51 приведена фотография доменной структуры ферромагнитной пленки толщиной 500Ǻ, выявленная с помощью эффекта Фарадея.

Рисунок 51 - Доменная структура тонкой ферромагнитной пленки, выявленная с помощью эффекта Фарадея.


Отличие от магнитооптического эффекта Керра состоит лишь в том, что на анализатор попадает свет, прошедший сквозь образец. В остальном используется такая же принципиальная схема, как и в случае магнитооптического эффекта Керра (см. рисунок 44) [9, с. 165].

Пусть к магнетику длиной L приложено магнитное поле Н. В общем случае угол поворота плоскости поляризации q пропорционален L и Н, т.е. имеет место следующее соотношение:

q=V·L·H (30)

Коэффициент пропорциональности V называется коэффициентом Верде [9, с. 373].

Постоянная Верде зависит от свойств вещества, температуры и частоты света [1, с.78].


Информация о работе «Исследование методов наблюдения доменов в тонких ферромагнитных пленках»
Раздел: Физика
Количество знаков с пробелами: 110622
Количество таблиц: 4
Количество изображений: 60

Похожие работы

Скачать
189451
18
0

... проводимости, запрещенная валентная зона, энергия активации). 8.  Температурная зависимость полупроводников. Литература, рекомендуемая к лабораторной работе:   10.  Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983. 11.  Калашников С.Г. Электричество. – М.: Наука, 1977. 12.  Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977. 13.  Телеснин Р.В., Яковлев В.Ф. Курс ...

Скачать
42038
10
10

... , что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов . В современной квантово-механической теории ферромагнетизма объяснена природа самопроизвольной намагниченности ферромагнетиков и природа возникновения сильного внутреннего поля . Ферромагнитными свойствами могут обладать кристаллы веществ, атомы которых имеют не заполненные электронами внутренние ...

Скачать
97096
0
5

... беспредельной ёмкостью памяти, а спецификой механизмов, предохраняющих человеческую память от "переполнения". По быстродействию (скорости записи и воспроизведения информации) машинная память значительно превосходит память человека. Скорость срабатывания элементов, на основе которых строятся современные ЗУ, определяется в конечном счете скоростью протекания электронных процессов, в то время как ...

Скачать
45620
11
15

... включать режим I при входном напряжении частотой 50 Гц, т.е. в "сеть" ибо это действие может привести к порче оборудования. При исследовании явления магнитного гистерезиса производится расчеты напряженности магнитного поля и магнитной индукции по выше рассмотренным формулам. Исследование ферромагнитных свойств электротехнической стали. В качестве исследуемого образца был взят ...

0 комментариев


Наверх