1.7 Магнитные фазовые переходы

Ферромагнетизм существует не при всех температурах. При повышении температуры собственный спонтанный магнитный момент тела уменьшается, а при некоторой температуре Т, называемой температурой Кюри, обращается в нуль (конечно, если отсутсвует магнитное поле, т.е. Н=0). Выше температуры Кюри все ферромагнетики – парамагнетики, но не все парамагнетики при низкой температуре – ферромагнетики. Значение температуры Кюри Т и плотности спонтанного магнитного момента М (при Т → 0) у разных материалов различны (таблица 3).

Таблица 3 - Значение Т и М для разных материалов

Вещество Fe Co Ni

М, (эрг/Тс)

1735 1445 509

Т, (К)

1043 1403 631

Температурная зависимость плотности спонтанного магнитного момента М (Т) никеля показана на рисунке 12 [5, с. 99].

Рисунок 12 - Зависимость спонтанного магнитного момента Ni от температуры.

В учении о магнитоупорядоченных веществах важную роль играют представления о магнитных фазовых переходах. Различают магнитные переходы 1-го и 2-го рода. Переходы 1-го рода характеризуются непрерывным изменением термодинамических функций, например свободной энергии, или термодинамического потенциала системы Ф (Т, Р, Н), где Т, Р, и Н – внешние термодинамические параметры, но испытывают скачок первые производные Ф´ (Т, Р, Н). Поскольку

(Ф/Т)Р, Н = Q

и

(Ф/Н)Т, Р = I,

то при переходе первого рода существуют скачки скрытой теплоты Q и намагниченности I.

Переходы 2-го рода характеризуются непрерывным изменением функций Ф (Т, Р, Н) и Ф´ (Т, Р, Н), однако скачки испытывают вторые производные Ф´´ (Т, Р, Н); это означает, что существуют скачки в точке перехода 2-го рода теплоемкости (Q/T)Р, Н = CР, Н и температурного коэффициента намагниченности (I/h)Т, Р. Рассматриваемые переходы являются магнитными переходами типа порядок – беспорядок (например, ферромагнетизм – парамагнетизм). На рисунке 13, б показано схематическое изменение самопроизвольной намагниченности I, при магнитных переходах 2-го рода типа порядок – беспорядок. В большинстве магнитоупорядоченных веществ в точках Кюри и Нееля возникают именно такие переходы.

Рисунок 13 - Магнитные фазовые переходы 1-го (а) и 2-го (б) рода.


Согласно Ландау магнитный переход 2-го рода можно приближенно описать с помощью разложения энергии ферромагнетика в ряд по четным степеням параметра магнитного упорядочения, за который можно принять намагниченность I.Для случая ферромагнетика имеем

W = W0 + aI2 + bI4 – IH (15)

где W0 – аддитивная постоянная,

а и b – некоторые коэффициенты (знак минус перед энергией поля IH означает, что магнитная система находится в стабильном состоянии). Из условия равновесия магнитной системы W/I = 0 получаем уравнение состояния ферромагнетика вблизи точки Кюри Тс.

αI + βI3 = H (16)

где α = 2а, β = 4b – новые коэффициенты, зависящие от Т и Р; в частности, можно коэффициент α разложить в ряд по разности Т – Т:

α =αТс (Т – Т ) (17)

В отсутствии магнитного поля I = Is. Из (16) и (17) имеем

I = - (αТc / β) (Т –Т) (18)

При достижении температуры Т = Т намагниченность Is = 0 и, следовательно, α = 0. Таким образом, равенство α = 0 может быть использовано для определения температуры Кюри. Последнее уравнение можно записать в виде:

Is = A (Т –Т)1/2 (19)

где

А = (αТс /b)1/2

При Т = Т, т.е. a = 0, из (16) имеем:

I = ВН 1/3 (20)

где В = (1/b)1/3. Присоединяя сюда соотношение

χ = С (Т – Т)-1 (21)

(закон Кюри – Вейсса, который справедлив при Т ≥ Т), мы получаем три уравнения для описания магнитного перехода в окрестности точки Кюри.

Однако эти уравнения весьма приближенны, особенно в узкой окрестности точки Кюри, т.е. в области |τ| =(Т – Т) / Т ≤ 10-4. В этой области возникают так называемые флуктуации магнитного порядка – критическое состояние вещества. Влияние этих флуктуаций в самой точке Т приводит к корреляции спинов, что должно быть учтено с помощью введения новых показателей, степеней в систему уравнений (19) – (21), а именно:

I = A (Т –Т)b, I = ВН 1/d, χ =С(Т –Т) (22)

где b, d и g - так называемые критические индексы магнитного перехода. Все термодинамические функции вблизи перехода испытывают резкие изменения (сингулярности), и поэтому эти индексы должны быть более высокими, чем дает термодинамика Ландау.

Априори можно утверждать, что между критическими индексами должна существовать количественная связь, так как все процессы, протекающие в критической области, взаимосвязаны. Оказывается, связь между ними довольно проста (закон подобия):

g = b (d - 1) (23)

Измерениями для Ni и некоторых ферритов установлено, что g = 1,3; b = 0,38; d = 4,42. Подставляя эти значения в закон подобия, можно убедиться, что этот закон удовлетворяется.

Отметим, что уравнение I = ВН 1/d является аналогом уравнения состояния жидкости:

r - rкр = а (Р – Ркр)1/d

где r - плотность, Р – давление; вблизи точки перехода (критической точки) r = rкр, Р = Ркр. Измерения показали, что вблизи критической точки (Т = Ткр) критический индекс d для системы жидкость – газ равен 4,2; т.е. приблизительно такой, как и для системы ферромагнетик – парамагнетик. Из этого следует, что результаты по изучению механизма фазовых переходов в магнитных веществах можно переносить на более сложные переходы, происходящие в твердых и жидких телах. Поэтому физики проявляют такой большой интерес к исследованию магнитных фазовых переходов.

Исследованиями установлено, что в небольшом числе магнитоупорядоченных веществ в точке Кюри происходит переход 1-го рода. В этом случае температурный ход самопроизвольной намагниченности, в отличие от перехода 2-го рода, при приближении к T обрывается скачком (рисунок 13, а). Такой переход был обнаружен в сплаве MnAs и некоторых других.

Помимо переходов типа порядок – беспорядок в магнитоупорядоченных веществах могут быть магнитные переходы типа порядок – порядок (например, ферромагнетизм – антиферромагнетизм). Эти переходы могут возникать самопроизвольно при достижении определенной критической температуры или под действием внешнего магнитного поля при достижении критического поля. В зависимости от «резкости» перехода они могут быть переходами 1-го или 2-го рода.

Для веществ, обладающих такими переходами, строят так называемые магнитные фазовые диаграммы. При достижении определенной температуры и магнитного поля в веществе может проявляться магнитная тройная точка (трикритическая точка) Т., в которой сосуществуют три состояния вещества: антиферромагнитное, метамагнитное (неустойчивое ферромагнитное состояние) и парамагнитное. Выше тройной точки в магнитном поле при повышении Т наблюдаются переходы: антиферромагнетизм – метамагнетизм - парамагнетизм.

В последние годы исследованы так называемые магнитоориентационные переходы, при которых скачком или плавно (переходы 1-го или 2-го рода) изменяется направление вектора самопроизвольной намагниченности Is по отношению к осям кристалла. Эти переходы особенно распространены в редкоземельных магнитоупорядоченных веществах [1, с.52-55].


Информация о работе «Исследование методов наблюдения доменов в тонких ферромагнитных пленках»
Раздел: Физика
Количество знаков с пробелами: 110622
Количество таблиц: 4
Количество изображений: 60

Похожие работы

Скачать
189451
18
0

... проводимости, запрещенная валентная зона, энергия активации). 8.  Температурная зависимость полупроводников. Литература, рекомендуемая к лабораторной работе:   10.  Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983. 11.  Калашников С.Г. Электричество. – М.: Наука, 1977. 12.  Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977. 13.  Телеснин Р.В., Яковлев В.Ф. Курс ...

Скачать
42038
10
10

... , что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов . В современной квантово-механической теории ферромагнетизма объяснена природа самопроизвольной намагниченности ферромагнетиков и природа возникновения сильного внутреннего поля . Ферромагнитными свойствами могут обладать кристаллы веществ, атомы которых имеют не заполненные электронами внутренние ...

Скачать
97096
0
5

... беспредельной ёмкостью памяти, а спецификой механизмов, предохраняющих человеческую память от "переполнения". По быстродействию (скорости записи и воспроизведения информации) машинная память значительно превосходит память человека. Скорость срабатывания элементов, на основе которых строятся современные ЗУ, определяется в конечном счете скоростью протекания электронных процессов, в то время как ...

Скачать
45620
11
15

... включать режим I при входном напряжении частотой 50 Гц, т.е. в "сеть" ибо это действие может привести к порче оборудования. При исследовании явления магнитного гистерезиса производится расчеты напряженности магнитного поля и магнитной индукции по выше рассмотренным формулам. Исследование ферромагнитных свойств электротехнической стали. В качестве исследуемого образца был взят ...

0 комментариев


Наверх