1.10 Обработка экспериментальных данных

При обработке экспериментальных данных, как правило, возникает задача аппроксимации (приближение) результатов эксперимента аналитической зависимостью y=f(x), которую можно использовать в последующих расчетах. Существует три возможности аппроксимации опытных данных:

1) аппроксимирующая функция должна пройти через все опытные точки. Такой способ аппроксимации называется интерполяцией;

2) аппроксимирующая функция должна сглаживать(усреднять) опытные данные. Такой способ аппроксимации называется регрессией или сглаживанием;

3) аппроксимирующая функция должна отбрасывать систематическую погрешность (шумы, наложившиеся на экспериментальные данные). Такой способ аппроксимации называется сглаживанием с фильтрацией данных.

1.10.1 Интерполяция

Встроенные функции MathCAD позволяют при интерполяции проводить через экспериментальные точки кривые разной степени сложности.

Линейная интерполяция. При линейной интерполяции аппроксимирующая функция соединяет опытные точки отрезками прямых линий. Для проведения такой интерполяции используется функция linterp(x,y,t), где

x – вектор опытных значений аргумента;

y – вектор опытных значений функций;

t – значение аргумента, при котором вычисляется интерполирующее значение функции.

Кубическая сплайн-интерполяция. В большинстве случаев желательно соединять экспериментальные точки не ломаной линией, а гладкой линией, для чего используется сплайн-интерполяция.

Кубическая сплайн-интерполяция получается в результате создания ряда кубических полиномов, проходящих через набор из трех соседних точек. Кубические полиномы затем состыковываются друг с другом, чтобы образовать единую кривую. Для кубической интерполяции используется функция interp(VS,x,y,t),

где VS- вектор вторых производных, созданных функцией lspline(x,y); pspline(x,y); cspline(x,y);

x- вектор опытных значений аргумента;

y- вектор опытных значений функций;

t- значение аргумента, при котором вычисляется интерполирующее значение функции.

БУТА сплайн интерполяция. Отличается от всех остальных тем, что соединение отдельных отрезков (splin-ов) осуществляется не в экспериментальных точках Xi, а в точках, которые задает сам пользователь. Для определения коэффициентов кривой этой интерполяции используется функция bspline(x,y,xx.t),

где X- вектор опытных значений аргумента;

y- вектор опытных значений функции;

xx- вектор значений аргумента, при которых вычисляются интерполирующие значения функции (точки сшива полиномов);

t- порядок полинома spline-интерполяции(принимает значения 1,2,3).

1.10.2 Функции регрессии

В MathCAD имеется ряд функций, которые создают кривые определенного типа с минимальным отклонением от имеющегося набора экспериментальных данных. Эти кривые не проходят через точки опытных данных.

В зависимости от вида уравнения различают регрессии:

-линейная;

-линейная регрессия общего вида;

-экспоненциальная;

-степенная;

-полиномиальная;

-синусоидальная;

-логарифмическая;

-нелинейная общего вида.

Линейная регрессия. Аппроксимируется зависимостью a+b*x. Для нахождения коэффициентов a и bиспользуются соответственно функции intercept(x,y) и slope(x,y), где (x.y)- вектора экспериментальных данных.

Линейная регрессия общего вида. Перед определенным коэффициентом регрессии необходимо определить набор функций, с помощью которых будут аппроксимироваться опытные данные. Выбор функции осуществляет сам пользователь исходя из поведения исходной зависимости.

Формат записи:

linfit(X, Y, F),

X Y-вектора опытных значений аргумента и функции.

Нелинейная регрессия общего вида. Выбор функции в этом случае осуществляет сам пользователь. Для проведения регрессии такого вида служит функция genfit:

Формат записи:

genfit(X,Y,pribl,F),

(X,Y)-набор экспериментальных данных;

pribl- вектор начальных приближений для коэффициентов выбранной функции;

F-вектор, состоящий из самой функции и частных производных этой функции по каждому из коэффициентов.

Полиномиальная регрессия. В MathCAD полиномиальная регрессия реализуется комбинацией встроенных функций интерполяции и регрессии.

Формат записи:

interp(Z,X,Y,t); redress(X,Y,k);

X,Y-наборы опытных данных;

t-значение аргумента, при котором вычисляется интерполирующее значение функции;

k-степень полинома;

z-вектор коэффициентов для построения полинома, создаваемых функцией regress.

1.11 Интернет технологии

Интернет – это совокупная взаимосвязь компьютерных систем и служб.

Исходя от назначения службы выделяем

1.WWW (worlc wide web)- всемирная паутина, гипертекст, информ.система.

2. Электронная почта Е-mail. Система пересылки.

3. Телеконференция (Usenet). Система обмена информации с множеством пользователей.

4. Файловые серверы (FTR) - комплекты хранящие данные доступные для пользователя.

5. Общение в реальном масштабе времени. Служба (WWW) элементы.

Главными элементами технологии www является :

Язык гипертекстовой разметки документов HTML;

Протокол обмена гипертекстовой информации HTTP;

Универсальный способ адресации ресурсов сети URI и URL;

Специфическое программное обеспечение

Средства разработки приложений (Front Page)

Гипертекст – метод представления текста, изображения, звука, видео, связанный друг с другом гиперссылкой.

Гиперссылка – адрес того ресурса, которому нужно совершить переход. Гиперссылка бывает в виде текста или графического изображения. Щелчок мышке по гиперссылке приводит к перемещению на другой ресурс сети Интернет.

Протокол – набор правил по передаче и приему информации компьютерной сети.

Документ HTML представляет собой файл, который на ряду с текстом определяет содержание документа, включает специальные управляющие HTML

Язык HTML обеспечивает не столько форматирование документа, описание его логической структуры. Форматирование и отображение документа на конкретном компьютере производится специальной программой – браузером. С последней версией операционной системы Windows XP поставляется версия браузера Internet Explorer. Эта программа предоставляет единый метод доступа к локальным документам компьютера, ресурсам корпоративной сети и к информации, доступной в Интернете. Она обеспечивает работу с World Wide Web, предоставляет идентичные средства работы с локальными папками компьютера и даёт доступ к средствам связи через Интернет.



Информация о работе «Математическое моделирование технических объектов»
Раздел: Математика
Количество знаков с пробелами: 31311
Количество таблиц: 1
Количество изображений: 23

Похожие работы

Скачать
13804
0
1

... гидродинамического режима системы могут изменяться виды моделей [1]. Цель данной курсовой работы – создать математическую модель процесса получения эмульгатора (применяемого для стабилизации эмульсий «масло в воде») из масла и триэтаноламина и дать характеристику этой модели. Математическое моделирование данного процесса заключается в расчёте значений концентраций реагентов и величин потоков на ...

Скачать
107377
30
9

... воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно. Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики §1. Принципы построения электронного учебника Прежде чем рассмотреть ...

Скачать
32731
0
0

... некие ресурсы. То есть технический объект реализует в себе единство затрат и выигрыша. Их отношение лежит в основе практически всех систем оценки эффективности. Понятие «модель технического объекта», на наш взгляд, непосредственно связана с необходимостью рассмотрения категории идеального. Идеал в общественных науках, в искусстве определяется энциклопедическим словарем как «идея, понятие, ...

Скачать
21953
0
1

... Кроме того, техническое (инженерное) творчество довольно часто приносит еще дополнительное моральное и материальное вознаграждение и глубокое удовлетворение полученными результатами. Понятия, связанные с творчеством и техникой. Технический объект и технология Общественная жизнь любой страны, любого народа не может развиваться в нужном направлении без творческой деятельности масс. На основании ...

0 комментариев


Наверх