1. Случайная величина Х распределена нормально и её среднее
квадратичное отклонение d известно.
В этом случае с надёжностью g верхняя граница ошибки
, (*)
где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.
2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.
В этом случае с надёжностью g верхняя граница ошибки
, (**)
где n – число испытаний; s – «исправленное» среднее квадратическое отклонение, находят по таблице приложения 3.
3. Случайная величина Х распределена по закону, отличному от нормального.
В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.
Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.
Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.
Глава 3. Вычисление интегралов методом Монте-Карло.
§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.
Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.
§2. Способ усреднения подынтегральной функции.
В качестве оценки определённого интеграла принимают
,
где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.
Дисперсия усредняемой функции равна
,
где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n<30) , где .
Эти формулы для вычисления дисперсии применяют и при других способах интегрирования, когда усредняемая функция не совпадает с подынтегральной функцией.
В качестве оценки интеграла , где область интегрирования D принадлежит единичному квадрату , , принимают
, (*)
где S – площадь области интегрирования; N – число случайных точек , принадлежащих области интегрирования.
Если вычислить площадь S трудно, то в качестве её оценки можно принять ; в этом случае формула (*) имеет вид
,
где n – число испытаний.
В качестве оценки интеграла , где область интегрирования V принадлежит единичному кубу , , , принимают , где V – объём области интегрирования, N – число случайных точек , принадлежащих области интегрирования.
Если вычислить объём трудно, то в качестве его оценки можно принять , в этом случае формула (**) имеет вид , где n – число испытаний.
Задача: найти оценку определённого интеграла .
Решение. Используем формулу . По условию, a=1, b=3, . Примем для простоты число испытаний n=10.Тогда оценка , где возможные значения разыгрывается по формуле .
Результаты десяти испытаний приведены в таблице 1.
Случайные числа взяты из таблицы приложения.
Таблица 1.
Номер i | |||
1 2 3 4 5 6 7 8 9 10 | 0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 | 1,200 2,946 1,506 1,752 2,040 1,270 2,726 1,934 1,708 2,752 | 2,200 3,946 2,506 2,752 3,040 2,270 3,726 2,934 2,708 3,752 |
Из таблицы 1 находим . Искомая оценка
§3. Способ существенной выборки, использующий «вспомогательную плотность распределения».
В качестве оценки интеграла принимают , где n – число испытаний; f(x) – плотность распределения «вспомогательной» случайной величины X, причём ; - возможные значения X, которые разыгрывают по формуле .
Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку .
Задача. Найти оценку интеграла .
Решение. Так как , то в качестве плотности распределения «вспомогательной» случайной величины X примем функцию . Из условия найдём . Итак, .
Запишем искомый интеграл так:
.
Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями):
,
где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение
, или уравнение ,
где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X:
.
В таблице 2 приведены результаты 10 испытаний.
Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .
Таблица 2.
Номер i | |||||
1 2 3 4 5 6 7 8 9 10 | 0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 | 0,140 0,980 0,326 0,459 0,600 0,185 0,894 0,550 0,436 0,905 | 1,150 2,664 1,385 1,582 1,822 1,203 2,445 1,733 1,546 2,472 | 1,140 1,980 1,326 1,459 1,600 1,185 1,894 1,550 1,436 1,905 | 1,009 1,345 1,044 1,084 1,139 1,015 1,291 1,118 1,077 1,298 |
§4. Способ, основанный на истолковании интеграла как площади.
Пусть подынтегральная функция неотрицательна и ограничена: , а двумерная случайная величина распределена равномерно в прямоугольнике D с основанием и высотой . Тогда двумерная плотность вероятности для точек, принадлежащих D; вне D.
В качестве оценки интеграла принимают , где n – общее число случайных точек , принадлежащих D; - число случайных точек, которые расположены под кривой .
Задача. Найти оценку интеграла .
Решение. Используем формулу .
В интервале (0,2) подынтегральная функция неотрицательна и ограничена, причём ; следовательно, можно принять c=4.
Введём в рассмотрение двумерную случайную величину (X,Y), распределённую равномерно в прямоугольнике D с основанием и высотой с=4, плотность вероятности которой .
Разыгрываем n=10 случайных точек , принадлежащих прямоугольнику D. Учитывая, что составляющая X в интервале (0,2) распределена равномерно с плотностью и составляющая Y в интервале (0,4) распределена равномерно с плотностью , разыграем координаты случайной точки , принадлежащей прямоугольнику D, по паре независимых случайных чисел : , .Отсюда , .
Номер i | |||||||
1 2 3 4 5 6 7 8 9 10 | 0,100 0,253 0,520 0,863 0,354 0,809 0,911 0,542 0,056 0,474 | 0,200 0,506 1,040 1,726 0,708 1,618 1,822 1,084 0,112 0,948 | 0,040 0,256 1,082 2,979 0,501 2,618 3,320 1,175 0,013 0,899 | 3,960 3,744 2,918 1,021 3,499 1,382 0,680 2,825 3,987 3,101 | 0,973 0,376 ,135 0,467 0,876 0,590 0,737 0,048 0,489 0,296 | 3,892 1,504 0,540 1,868 3,504 2,360 2,948 0,192 1,956 1,184 | 1 1 1 1 1 1 |
Если окажется, что , то точка лежит под кривой и в «счётчик » надо добавить единицу.
Результаты десяти испытаний приведены в таблице 3.
Из таблицы 3 находим . Искомая оценка интеграла
§5. Способ «выделения главной части».
В качестве оценки интеграла принимают
,
где - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , которые разыгрывают по формуле ; функция , причём интеграл можно вычислить обычными методами.
Задача. Найти оценку интеграла .
Решение. Так как , то примем . Тогда, полагая число испытаний n=10, имеем оценку
.
Выполнив элементарные преобразования, получим
.
Учитывая, что a=0, b=1, возможные значения разыграем по формуле . Результаты вычислений приведены в таблице 4.
Номер i | |||||
1 2 3 4 5 6 7 8 9 10 | 0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 | 0,010 0,947 0,064 0,141 0,270 0,018 0,745 0,218 0,125 0,767 | 1,010 1,947 1,064 1,141 1,270 1,018 1,745 1,218 1,125 1,767 | 1,005 1,395 1,032 1,068 1,127 1,009 1,321 1,104 1,061 1,329 | 2,000 1,843 2,000 1,995 1,984 2,000 1,897 1,990 1,997 1,891 |
Сложив числа последнего столбца таблицы 4, найдём сумму 19,597, подставив которую в соотношение , получим искомую оценку интеграла
.
Заметим, что точное значение I=1,147.
§6. Программа вычисления определенного интеграла методом Монте-Карло.
Вычислить определенный интеграл по методу “Монте-Карло” по формуле
,
где n – число испытаний ;g(x) – плотность распределения “вспомогательной” случайной величины X, причем , в программе g(x) = 1/(b-a)
Программа написана на языке TURBO PASCAL 7.0
Program pmk;
Uses crt;
Var k,p,s,g,x,Integral : real;
n,i,a,b : integer;
BEGIN
writeln(‘Введите промежуток интегрирования (a;b):’);
readln(a);
readln(b);
writeln(‘Введите количество случайных значений(число испытаний):’);
readln(n);
k:=b-a; {Переменной“k”присвоим значение длины промежутка интегрирования}
writeln(‘k=’,k);
for i:= 1 to n do begin {проведем n испытаний}
g:=random; {g – переменная вещественного типа, случайная величина из промежутка [0;1]}
x:= a + g*(b-a); {По этой формуле получается произвольная величина из [a; b] }
s:=s + (1+x); {s:=s +(x*x)} {Вообще можно подставить любую функцию}
delay(1000); {задержка, чтобы произвольные значения не повторялись}
end; {конец испытаний}
writeln(‘s=’,s); {Сумма функции для n произвольных значений}
Integral:=(1/n)*k*s ;
writeln(‘Интеграл=’,Integral);
readln;
END.
Требуется ввести промежуток интегрирования и количество испытаний, интегрируемая функция уже задана в программе (но ее можно поменять).
; .
Функция | k | N=10 | N=100 | N=500 | N=1000 |
f(x)=1+x | 2 | 5.737 | 5.9702 | 6.02 | 5.99 |
f(x)=x*x | 3 | 9.6775 | 8.528 | 8.7463 | 8.937 |
§7. Вычисление кратных интегралов методом Монте-Карло.
Пусть функция непрерывна в ограниченной замкнутой области S и требуется вычислить m-кратный интеграл
. (1)
Геометрически число I представляет собой (m+1)-мерный объём прямого цилиндроида в пространстве , построенного на основании S и ограниченного сверху данной поверхностью , где .
Преобразуем интеграл (1) так, чтобы новая область интегрирования целиком содержалась внутри единичного m-мерного куба. Пусть область S расположена в m-мерном параллелепипеде
. (2)
Сделаем замену переменных . (3)
Тогда, очевидно, m-мерный параллелепипед (2) преобразуется в m-мерный единичный куб (4)
и, следовательно, новая область интегрирования σ, которая находится по обычным правилам, будет целиком расположена внутри этого куба.
Вычисляя якобиан преобразования, будем иметь:
. Таким образом, , (5)
где . Введя обозначения и , запишем интеграл (5) короче в следующем виде: . (5/)
Укажем способ вычисления интеграла (5/) методом случайных испытаний.
Выбираем m равномерно распределённых на отрезке [0, 1] последовательностей случайных чисел:
Точки можно рассматривать как случайные. Выбрав достаточно большое N число точек , проверяем, какие из них принадлежат области σ (первая категория) и какие не принадлежат ей (вторая категория). Пусть
1. при i=1, 2, …, n (6)
2. при i=n+1, n+2, …,N (6/)
(для удобства мы здесь изменяем нумерацию точек).
Заметим, что относительно границы Г области σ следует заранее договориться, причисляются ли граничные точки или часть их к области σ, или не причисляются к ней. В общем случае при гладкой границе Г это не имеет существенного значения; в отдельных случаях нужно решать вопрос с учётом конкретной обстановки.
Взяв достаточно большое число n точек , приближённо можно положить: ; отсюда искомый интеграл выражается формулой , где под σ понимается m-мерный объём области интегрирования σ. Если вычисление объёма σ затруднительно, то можно принять: , отсюда . В частном случае, когда σ есть единичный куб, проверка становится излишней, то есть n=N и мы имеем просто .
Заключение.
Метод Монте-Карло используется очень часто, порой некритично и неэффективным образом. Он имеет некоторые очевидные преимущества:
а) Он не требует никаких предложений о регулярности, за исключением квадратичной интегрируемости . Это может быть полезным, так как часто очень сложная функция, чьи свойства регулярности трудно установить.
б) Он приводит к выполнимой процедуре даже в многомерном случае, когда численное интегрирование неприменимо, например, при числе измерений, большим 10.
в) Его легко применять при малых ограничениях или без предварительного анализа задачи.
Он обладает, однако, некоторыми недостатками, а именно:
а) Границы ошибки не определены точно, но включают некую случайность. Это, однако, более психологическая, чем реальная, трудность.
б) Статическая погрешность убывает медленно.
в) Необходимость иметь случайные числа.
Приложение.
Равномерно распределённые случайные числа
10 09 73 25 33 76 52 01 35 86 34 67 35 48 76 80 95 90 9117
37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 61 04 02
08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64
99 01 90 25 29 09 37 67 07 15 38 31 13 11 65 88 67 67 43 97
12 80 79 99 70 80 15 73 61 47 64 03 23 66 53 98 95 11 68 77
66 06 57 47 17 34 07 27 68 50 36 69 73 61 70 65 81 33 98 85
31 06 01 08 05 45 57 18 24 06 35 30 34 26 14 86 79 90 74 39
85 26 97 76 02 02 05 16 56 92 68 66 57 48 18 73 05 38 52 47
63 57 33 21 35 05 32 54 70 48 90 55 35 75 48 28 46 82 87 09
73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44
Литература.
1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов втузов. – 3-е изд., перераб. И доп. – М.: Высш. школа, 1979г.
2. Ермаков С. М. Методы Монте-Карло и смежные вопросы. М.: Наука, 1971г.
3. Севастьянов Б. А. Курс теории вероятностей и математической статистики. – М.:Наука,1982г.
4. Математика. Большой энциклопедический словарь / Гл. ред. Ю. В. Прохоров. – М.: Большая Российская энциклопедия,1999г.
5. Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для втузов. Изд. 5-е, перераб. и доп. М., «Высш. школа», 1977.
... 0,30) 125 0,25 [0,30; 0,55) 150 0,25 [0,55; 0,80) 175 0,15 [0,80; 0,95) 200 0,05 [0,95; 1,00) Для определения реализуемой доходности портфеля облигаций можно использовать метод Монте-Карло. Первая итерация (случайные числа: 0,91 для кривой доходностей и 0,12 для спреда между доходностями). В этом случае доходности казначейских облигаций со сроком до ...
етка – одно из простейших средств получения случайных чисел с хорошим равномерным распределением, на использовании которых основан этот метод. Метод Монте – Карло это статистический метод. Его используют при вычислении сложных интегралов, решении систем алгебраических уравнений высокого порядка, моделировании поведения элементарных частиц, в теориях передачи информации, при исследовании сложных ...
... Впрочем, для наиболее распространённых псевдослучайных чисел период столь велик, что превосходит любые практические потребности. Подавляющее большинство расчётов по методу Монте-Карло осуществляется с использованием псевдослучайных чисел. Значения любой случайной величины можно получить путём преобразования значений одной какой-либо случайной величины. Обычно роль такой случайной величины играет ...
... (Балаша-Фора-Мальгранжа, Черенина, Джефферсона, Хиллиера и др.) являются модификациями метода ветвей и границ с учётом специфики условий задачи. 4. Построение оптимальной последовательности заданий на обработку в узле вычислительной системы 4.1 Формализация вычислительного процесса и рабочей нагрузки Узел вычислительной системы представляется в виде совокупности оборудования и ...
0 комментариев