4.2.3. Проверка подкрановой части колонны на устойчивость из плоскости поперечной рамы
Проверка производится в соответствии с [4, п. 3.64], по N=1328,1кН.
Расчетная длина колонны из плоскости изгиба:
N ≤ φ(RbA + RscAs,tot) [3. 119]
где φ – коэффициент, определяемый по формуле
φ= φb + 2(φsb- φb)αs[3. 120]
но принимаемый не более φsb , здесь φb, φsb – коэффициенты, принимаемые по [3, табл. 26], для = 18,1, , и тяжелого бетона φb = 0,69,
и а=0,02м <0,15·h = 0.15·0.7 = 0.105м , φsb = 0,0,79.
αS = 0,178
φ= 0,69+2(0,79-0,69)0,178 =0,75
φ(RbA + RscAs,tot) = 0,75·(11,5·1,1·103·0,4·0,7 + 365·103·14,82·10-4)= 3062кН > 1328,1кН.
Проверка на устойчивость из плоскости поперечной рамы выполняется.
4.2.4. Назначение и расстановка поперечной арматуры
Из условия свариваемости в соответствии с [6, прил.9] принимаем поперечную арматуру диаметром 6 мм (АIII). В соответствии с [4, п.5.22] назначаем шаг поперечной арматуры 400 мм (< 500, < 20d = 2020= 400).
Сетки косвенного армирования в нижней части колонны не устанавливаются.
4.3. Расчет консоли колонны
Основные размеры консоли показаны на рисунке 4.8.
Рис. 4.8 - Расчетная схема консоли.
Исходные данные: hв = 600мм; с = 800мм; hн = 700мм; d = 600мм;
е = 700мм; lsup= 250мм (для балки пролётом 6 м);
кН;
Класс бетона - В 20: RB=11,5 МПа, RBt=0,90 МПа [3, табл.13];
Ев 240000 МПа [3,табл.18];
Класс арматуры A-III; Rs = 365 МПа; Rsc = 365 МПа [3, табл. 22];
Т.к. вылет консоли с = 800мм меньше 0,9·hк = 0,9·(700+600)=1170мм, то расчёт ведётся как для короткой консоли.
Расчет окаймляющих стержней:
Из рисунка 4.8 следует:
0,956, отсюда θ =73 о ;
где hк = d+l = 700 + 600 = 1300мм; f = 600 -100=500мм;
N0=Q·ctgθ = 664.28·ctg73o= 195.9кН
5.4·10-4 м2
Принимаем 2ø20 AIII (As=6,28·10-4 м2).
Требуемая длина анкеровки:
мм,
но не менее 12·20 = 240 мм и =200 мм.
Принимаем длину анкеровки l = 300 мм.
Расчёт хомутов.
Условие прочности: [3, (85)]
Из условия свариваемости с ø20 [5, прил.9] принимаем хомуты Æ6 AIII (Asw=0.283см2).
Шаг назначаем из условий:
150мм. Но Sw≤150мм. Принимаем Sw = 150мм:
Тогда 9,43·10-4
lb = lsupSinθ = 250·0,956=239мм;
1,04 [3, (87)]
тогда Q ≤ 0.8·1.04·11.5·103·1.1·0.4·0.239·0.956 =961.9 кН [3, (85)]
Правая часть условия (85) принимается:
1. Не более 3.5Rbtbh0 = 3.5·0.9·103·1.1·0.4·(1.3 – 0.03)= 1760кН;
2. Не менее меньшего из 2-х значений:
2.5Rbtbh0 = 2.5·0.9·103·1.1·0.4·(1.3 – 0.03)= 1257кН;
2104кН.
Принимаем правую часть [3, (85)] равной 961.9 кН, тогда условие прочности
Q = 664.28кН < 961.9кН выполняется.
4.4. Проектирование стыка рабочей продольной арматуры
В соответствии с [3, п. 5.38] длина перепуска . По [3, табл.37] для стыков арматуры в растянутом бетоне при диаметре 20 мм:
740 мм,
но не менее 20·20 = 400 мм и =250 мм. Принимаем длину перепуска l = 750 мм.
В соответствии с [3, п. 5.22] расстояние между хомутами по длине перепуска должно составлять не более 10dmin = 10·20 = 200 мм. В местах нахлёста арматуры принимаем хомуты диаметром 6 мм (АIII) и шагом 160 мм.
Армирование консоли показано на рисунке 4.9.
Рис. 4.9 - Армирование консоли.
... свариваемости назначается диаметр поперечной арматуры dsw. 2. По диаметру и количеству поперечных стержней в сечении определяется площадь поперечной арматуры. мм, Asw = n∙fsw, где n – количество каркасов в плите; fsw – площадь одного поперечного стержня. Asw = 1,01 см2, 3. По конструктивным условиям назначается шаг поперечных стержней S: - если высота плиты h ≤ 450 мм., ...
... парусности и относительно небольшому весу легко устанавливается на железобетонной кровле и крепится двумя комплектами растяжек. Применение факельного выброса возможно не только в промышленной вентиляции, но и при вентиляции непромышленных зданий. Иначе говоря, рекомендуется вовсе отказаться от зонтов над выхлопными шахтами. В вентиляционной технике всегда оперируют со среднечасовыми величинами. ...
... 1991. - 767 с. 7. Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8. Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...
... внутренние самонесущие стены, опирающиеся на перекрытия и разделяющие пространство этажа здания на отдельные помещения. Полы. Основанием под полы в одноэтажных промышленных зданиях служит грунт, исключающий неравномерную осадку пола и обладающий достаточной прочностью. С грунта снимается растительный слой. Конструкция химически стойкого пола включает следующие элементы: бетонное основание (по ...
0 комментариев